Justification of the stationary phase approximation in time-domain asymptotics

被引:4
作者
McClure, JP [1 ]
Wong, R [1 ]
机构
[1] CITY UNIV HONG KONG, DEPT MATH, KOWLOON, HONG KONG
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1997年 / 453卷 / 1960期
关键词
D O I
10.1098/rspa.1997.0057
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A rigorous proof is supplied for the validity of an asymptotic approximation t I(lambda)=integral(a)(b) g(x)p{lambda f(x)} dx, where f(x) and g(x) are sufficiently smooth functions on [a, b] and p(x) is a piece-wise smooth periodic function with mean zero. In addition, a two-dimensional generalization is given. Problems concerning coalescence of two stationary points and a stationary point near an end point are also considered.
引用
收藏
页码:1019 / 1031
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1957, P CAMBRIDGE PHILOS S
[2]   TIME-DOMAIN ASYMPTOTICS AND THE METHOD OF STATIONARY PHASE [J].
CHAPMAN, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 437 (1899) :25-40
[3]  
Erdelyi A., 1956, ASYMPTOTIC EXPANSION
[4]  
Hormander L., 2003, ANAL LINEAR PARTIAL
[5]  
KELVIN L, 1887, PHILOS MAG, V23, P252
[6]  
KORNER TW, 1988, FOURIER ANAL
[7]   ERROR BOUNDS FOR STATIONARY PHASE APPROXIMATIONS [J].
OLVER, FWJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (01) :19-29
[8]  
PRENTICE PR, 1994, P ROY SOC LOND A MAT, V466, P341
[9]  
RUDIN W., 1964, Principles of Mathematical Analysis
[10]  
VANDERCORPUT JG, 1948, P NEDERL ACAD WETENS, V51, P650