Generalized potential harmonics and contracted Sturmians

被引:36
作者
Aquilanti, V [1 ]
Avery, J [1 ]
机构
[1] UNIV COPENHAGEN, HC ORSTED INST, DEPT PHYS CHEM, DK-2100 COPENHAGEN, DENMARK
关键词
D O I
10.1016/S0009-2614(97)00834-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A formalism is described for choosing computationally manageable Sturmian basis sets which are automatically adapted to the requirements of particular physical problems. The method is a generalization and improvement of the potential harmonic technique of Fabre de la Ripelle, which is extensively used in nuclear and atomic physics. The present generalization is not restricted to hyperspherical coordinates, and the basis functions are characterized by a physically motivated grand principal quantum number, rather than the grand angular momentum quantum number. As an illustration, the simple example of a two-electron atom is presented. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 32 条
[1]   The d-dimensional hydrogen atom: Hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets [J].
Aquilanti, V ;
Cavalli, S ;
Coletti, C .
CHEMICAL PHYSICS, 1997, 214 (01) :1-13
[2]  
Aquilanti V, 1996, NATO ASI 3 HIGH TECH, V8, P233
[3]   Alternative Sturmian bases and momentum space orbitals: An application to the hydrogen molecular ion [J].
Aquilanti, V ;
Cavalli, S ;
Coletti, C ;
Grossi, G .
CHEMICAL PHYSICS, 1996, 209 (2-3) :405-419
[4]   DISCRETE REPRESENTATIONS BY ARTIFICIAL QUANTIZATION IN THE QUANTUM-MECHANICS OF ANISOTROPIC INTERACTIONS [J].
AQUILANTI, V ;
GROSSI, G .
LETTERE AL NUOVO CIMENTO, 1985, 42 (04) :157-162
[5]  
Aquilanti V., 1992, FEW-BODY SYST S, V6, P573
[6]   HYPERSPHERICAL STURMIAN BASIS FUNCTIONS [J].
AVERY, J ;
HERSCHBACH, DR .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1992, 41 (05) :673-686
[7]  
Avery J, 1996, INT J QUANTUM CHEM, V60, P201, DOI 10.1002/(SICI)1097-461X(1996)60:1<201::AID-QUA22>3.0.CO
[8]  
2-G
[9]  
Avery J., 1994, CONCEPTUAL TRENDS QU, P135
[10]  
Avery J., 1989, Hyperspherical Harmonics: Applications in Quantum Theory