Template synthesis of carbon nanotubes from porous alumina matrix on silicon

被引:8
作者
Gras, R.
Duvail, J. L.
Minea, T.
Dubosc, M.
Tessier, P. Y.
Cagnon, L.
Coronel, P.
Torres, J.
机构
[1] STMicroelect, F-38926 Crolles, France
[2] IMN, Lab Phys Mat & Nanostruct, Nantes, France
[3] IMN, Lab Plasmas & Couches Minces, Nantes, France
[4] CNRS, Cristallog Lab, F-38042 Grenoble, France
关键词
carbon nanotubes; anodic alumina; template; aluminium thin layers;
D O I
10.1016/j.mee.2006.10.051
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The extreme properties of carbon nanotubes (CNTs) make them a good candidate for advanced interconnects to achieve the performances required for the new generation of integrated circuits (ICs). However, the integration of CNTs in microelectronics devices requires the development of a technique allowing the control of the morphology of CNTs. In this paper, we report on a simple technique to vertically integrate CNTs on silicon substrate via porous alumina thin films. The process follows four steps: (i) aluminium thin films deposition on Si substrate, (ii) anodic oxidation generating an alumina template with vertical and cylindrical nanopores (phi < 40 nm), (iii) electrodeposition of metal catalyst on Si substrate at the bottom of the pores, and (iv) CNTs growth inside as-formed nanopores by a PECVD technique. It was demonstrated that the quality of the aluminium thin layers is crucial for the control of the oxidation step. Then, the experimental parameters of anodic oxidation (voltage, electrolyte, one or two steps oxidation process, etc.) were tuned to modulate the porosity (pore diameter and density) of the as-formed alumina. The growth of CNTs inside the alumina matrix shows a direct relationship between CNTs morphology and nanopores one. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2432 / 2436
页数:5
相关论文
共 21 条
[1]   Suppression of tunneling into multiwall carbon nanotubes -: art. no. 166801 [J].
Bachtold, A ;
de Jonge, M ;
Grove-Rasmussen, K ;
McEuen, PL ;
Buitelaar, M ;
Schönenberger, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (16)
[2]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[3]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[4]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[5]   Quantized phonon spectrum of single-wall carbon nanotubes [J].
Hone, J ;
Batlogg, B ;
Benes, Z ;
Johnson, AT ;
Fischer, JE .
SCIENCE, 2000, 289 (5485) :1730-1733
[6]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[7]   Self-organized formation of hexagonal pore arrays in anodic alumina [J].
Jessensky, O ;
Muller, F ;
Gosele, U .
APPLIED PHYSICS LETTERS, 1998, 72 (10) :1173-1175
[8]   Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina [J].
Li, AP ;
Muller, F ;
Birner, A ;
Nielsch, K ;
Gosele, U .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :6023-6026
[9]   Fabry-Perot interference in a nanotube electron waveguide [J].
Liang, WJ ;
Bockrath, M ;
Bozovic, D ;
Hafner, JH ;
Tinkham, M ;
Park, H .
NATURE, 2001, 411 (6838) :665-669
[10]   ORDERED METAL NANOHOLE ARRAYS MADE BY A 2-STEP REPLICATION OF HONEYCOMB STRUCTURES OF ANODIC ALUMINA [J].
MASUDA, H ;
FUKUDA, K .
SCIENCE, 1995, 268 (5216) :1466-1468