Intermittent Dissipation at Kinetic Scales in Collisionless Plasma Turbulence

被引:171
作者
Wan, M. [1 ,2 ]
Matthaeus, W. H. [1 ,2 ]
Karimabadi, H. [3 ,4 ]
Roytershteyn, V. [4 ]
Shay, M. [1 ,2 ]
Wu, P. [1 ,2 ]
Daughton, W. [5 ]
Loring, B. [6 ]
Chapman, S. C. [7 ]
机构
[1] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA
[2] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] SciberQuest Inc, Del Mar, CA 92014 USA
[5] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[7] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
SOLAR-WIND; EVOLUTION; FLUCTUATIONS;
D O I
10.1103/PhysRevLett.109.195001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy.
引用
收藏
页数:5
相关论文
共 34 条
[1]   Small-scale energy cascade of the solar wind turbulence [J].
Alexandrova, O. ;
Carbone, V. ;
Veltri, P. ;
Sorriso-Valvo, L. .
ASTROPHYSICAL JOURNAL, 2008, 674 (02) :1153-1157
[2]  
[Anonymous], 2008, PHYS PLASMAS
[3]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[4]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[5]  
Biskamp D., 2003, Magnetohydrodynamic turbulence
[6]   COHERENT STRUCTURE FORMATION AND MAGNETIC-FIELD LINE RECONNECTION IN MAGNETOHYDRODYNAMIC TURBULENCE [J].
CARBONE, V ;
VELTRI, P ;
MANGENEY, A .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (08) :1487-1496
[7]   Coronal holes and the high-speed solar wind [J].
Cranmer, SR .
SPACE SCIENCE REVIEWS, 2002, 101 (3-4) :229-294
[8]   On the statistical theory of isotropic turbulence [J].
de Karan, T ;
Howarth, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1938, 164 (A917) :0192-0215
[9]   FORWARD CASCADE OF WHISTLER TURBULENCE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS [J].
Gary, S. Peter ;
Chang, Ouliang ;
Wang, Joseph .
ASTROPHYSICAL JOURNAL, 2012, 755 (02)
[10]   Alfven-cyclotron fluctuations: Linear Vlasov theory [J].
Gary, SP ;
Borovsky, JE .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A6)