Folding of the disulfide-bonded beta-sheet protein tendamistat: Rapid two-state folding without hydrophobic collapse

被引:57
作者
Schonbrunner, N
Koller, KP
Kiefhaber, T
机构
[1] UNIV BASEL,BIOCTR,DEPT BIOPHYS CHEM,CH-4056 BASEL,SWITZERLAND
[2] HOECHST AG,CENT PHARMA RES,D-65926 FRANKFURT,GERMANY
关键词
protein folding; folding kinetics; hydrophobic collapse; prolyl isomerization; two-state folding;
D O I
10.1006/jmbi.1997.0960
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the reversible folding and unfolding reactions of the small 74 amino acid residue protein tendamistat. The secondary structure of tendamistat contains only beta-sheets and loop regions and the protein contains two disulfide bonds. Fluorescence-detected refolding kinetics of tendamistat (disulfide bonds intact) comprise of a major rapid fast reaction (tau = 10 ms in water) and two minor slow reactions. In the fast reaction 80% of the unfolded molecules are converted to native protein. The two slow reactions are part of a parallel slow folding pathway. On this pathway the rate-limiting step in the formation of native molecules is cis to trans isomerization of at least one of the three trans Xaa-Pro peptide bonds. This reaction is catalyzed efficiently by the enzyme peptidyl-prolyl cis-trans isomerase. Comparison of kinetic data with equilibrium unfolding transitions shows that the fast folding pathway follows a two-state process without populated intermediate states. Additionally, various sensitive tests did not detect any rapid chain collapse during tendamistat folding prior to the acquisition of the native three-dimensional structure. These results show that pre-formed disulfide bonds do not prevent efficient and rapid protein folding. (C) 1997 Academic Press Limited.
引用
收藏
页码:526 / 538
页数:13
相关论文
共 80 条
[1]   FREE-ENERGY LANDSCAPE FOR PROTEIN-FOLDING KINETICS - INTERMEDIATES, TRAPS, AND MULTIPLE PATHWAYS IN THEORY AND LATTICE MODEL SIMULATIONS [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07) :6052-6062
[2]   KINETIC-ANALYSIS OF FOLDING AND UNFOLDING THE 56-AMINO ACID IGG-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G [J].
ALEXANDER, P ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (32) :7243-7248
[3]  
[Anonymous], 1969, COMPREHENSIVE CHEM K
[4]   THERMODYNAMICS OF DENATURATION OF LYSOZYME BY GUANIDINE HYDROCHLORIDE .2. DEPENDENCE ON DENATURANT CONCENTRATION AT 25 DEGREES [J].
AUNE, KC ;
TANFORD, C .
BIOCHEMISTRY, 1969, 8 (11) :4586-&
[5]   PULSED H/D-EXCHANGE STUDIES OF FOLDING INTERMEDIATES [J].
BALDWIN, RL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (01) :84-91
[6]   CONSIDERATION OF POSSIBILITY THAT SLOW STEP IN PROTEIN DENATURATION REACTIONS IS DUE TO CIS-TRANS ISOMERISM OF PROLINE RESIDUES [J].
BRANDTS, JF ;
HALVORSON, HR ;
BRENNAN, M .
BIOCHEMISTRY, 1975, 14 (22) :4953-4963
[7]   SOLUTION OF THE PHASE PROBLEM IN THE X-RAY-DIFFRACTION METHOD FOR PROTEINS WITH THE NUCLEAR MAGNETIC-RESONANCE SOLUTION STRUCTURE AS INITIAL MODEL - PATTERSON SEARCH AND REFINEMENT FOR THE ALPHA-AMYLASE INHIBITOR TENDAMISTAT [J].
BRAUN, W ;
EPP, O ;
WUTHRICH, K ;
HUBER, R .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 206 (04) :669-676
[8]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[9]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[10]   KINETIC RESOLUTION OF PEPTIDE-BOND AND SIDE-CHAIN FAR-UV CIRCULAR-DICHROISM DURING THE FOLDING OF HEN EGG-WHITE LYSOZYME [J].
CHAFFOTTE, AF ;
GUILLOU, Y ;
GOLDBERG, ME .
BIOCHEMISTRY, 1992, 31 (40) :9694-9702