Growth and photovoltaic performance of SnS quantum dots

被引:63
作者
Deepa, K. G. [1 ]
Nagaraju, J. [1 ]
机构
[1] Indian Inst Sci, Dept Instrumentat & Appl Phys, Bangalore 560012, Karnataka, India
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2012年 / 177卷 / 13期
关键词
SnS quantum dots; TEM; SAED pattern; Solar cells; Cyclic voltammetry; NANOPARTICLES; NANOCRYSTALS; FILMS; SIZE;
D O I
10.1016/j.mseb.2012.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn2S3 and SnS2 which is visible in the SAED pattern. From the electrochemical characterization. HOMO-LUMO levels of both TiO2 and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO2. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO2 thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO2. Without the buffer layer, cell showed an open circuit voltage (V-oc) of 504 mV and short circuit current density (J(sc)) of 2.3 mA/cm(2) under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1023 / 1028
页数:6
相关论文
共 31 条
[1]   Quantum dot solar cells [J].
Aroutiounian, V ;
Petrosyan, S ;
Khachatryan, A ;
Touryan, K .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2268-2271
[2]   An oleic acid-capped CdSe quantum-dot sensitized solar cell [J].
Chen, Jing ;
Song, J. L. ;
Sun, X. W. ;
Deng, W. Q. ;
Jiang, C. Y. ;
Lei, W. ;
Huang, J. H. ;
Liu, R. S. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[3]  
Chopra K.L., 1983, THIN FILM SOLAR CELL
[4]   Efficiency enhancement in DSSC using metal nanoparticles: A size dependent study [J].
Deepa, K. G. ;
Lekha, P. ;
Sindhu, S. .
SOLAR ENERGY, 2012, 86 (01) :326-330
[5]   Fabrication of CdS/SnS heterostructured device using successive ionic layer adsorption and reaction deposited SnS [J].
Ghosh, Biswajit ;
Chowdhury, Sumit ;
Banerjee, Pushan ;
Das, Subrata .
THIN SOLID FILMS, 2011, 519 (10) :3368-3372
[6]   Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 164 (1-3) :3-14
[7]   Size and Shape Control of Colloidally Synthesized IV-VI Nanoparticulate Tin(II) Sulfide [J].
Hickey, Stephen G. ;
Waurisch, Christian ;
Rellinghaus, Bernd ;
Eychmueller, Alexander .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (45) :14978-+
[8]   Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles [J].
Hyun, Byung-Ryool ;
Zhong, Yu-Wu. ;
Bartnik, Adam C. ;
Sun, Liangfeng ;
Abruna, Hector D. ;
Wise, Frank W. ;
Goodreau, Jason D. ;
Matthews, James R. ;
Leslie, Thomas M. ;
Borrelli, Nicholas F. .
ACS NANO, 2008, 2 (11) :2206-2212
[9]   Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry [J].
Kucur, E ;
Riegler, J ;
Urban, GA ;
Nann, T .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04) :2333-2337
[10]  
Liu H., 2010, NANOTECHNOLOGY, V21