Double bilayers and transmembrane gradients: A molecular dynamics study of a highly charged peptide

被引:9
作者
Denning, Elizabeth J. [2 ]
Woolf, Thomas B. [1 ]
机构
[1] Johns Hopkins Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Sch Med, Dept Biophys, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1529/biophysj.108.134049
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The position and extent of movement of a charged peptide within a membrane bilayer provides much controversy. In our study, we have examined the nature of the highly charged helix-turn-helix motif (S3b and S4) to address how a highly charged peptide is stabilized within a bilayer in the presence of various transmembrane electrical potentials. Our double-bilayer simulation results show how the variation of the salt concentrations between the inner and outer bath establishes a transmembrane potential. Our results also show that important features of the peptide affected by changes in electrical potential are the center of mass depth, the swivel/kink degrees of conformation, and the hydrogen-bonding patterns. As the voltage gradient across the bilayer increased, the center of mass of the peptide shifted in a direction toward the outer bath. The peptide also has a higher percent helical content and the swivel/kink conformation is more rigid for nonpolarized systems where no voltage drop occurred between salt baths. Our results also provide some suggestions for how this domain may be affected by environmental changes as part of the voltage sensor in a K-channel.
引用
收藏
页码:3161 / 3173
页数:13
相关论文
共 64 条
[1]   Specificity of charge-carrying residues in the voltage sensor of potassium channels [J].
Ahern, CA ;
Horn, R .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (03) :205-216
[2]   Modeling charged protein side chains in lipid membranes [J].
Allen, Toby W. .
JOURNAL OF GENERAL PHYSIOLOGY, 2007, 130 (02) :237-240
[3]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[4]   Channel gating: Twist to open [J].
Biggin, PC ;
Sansom, MSP .
CURRENT BIOLOGY, 2001, 11 (09) :R364-R366
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   Molecular movement of the voltage sensor in a K channel [J].
Broomand, A ;
Männikkö, R ;
Larsson, HP ;
Elinder, F .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (06) :741-748
[7]   Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel [J].
Campos, Fabiana V. ;
Chanda, Baron ;
Roux, Benoit ;
Bezanilla, Francisco .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (19) :7904-7909
[8]   Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement [J].
Chanda, B ;
Asamoah, OK ;
Blunck, R ;
Roux, B ;
Bezanilla, F .
NATURE, 2005, 436 (7052) :852-856
[9]   Molecular determinants of gating at the potassium-channel selectivity filter [J].
Cordero-Morales, JF ;
Cuello, LG ;
Zhao, YX ;
Jogini, V ;
Cortes, DM ;
Roux, B ;
Perozo, E .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (04) :311-318
[10]   Proline-induced distortions of transmembrane helices [J].
Cordes, FS ;
Bright, JN ;
Sansom, MSP .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 323 (05) :951-960