Synthesis of Carbon Nanotubes Using a Butane-Air Bunsen Burner and the Resulting Field Emission Characteristics

被引:14
作者
Hsieh, Chih-Che [1 ]
Youh, Meng-Jey [2 ]
Wu, Hung-Chih [1 ]
Hsu, Li-Chieh [1 ]
Guo, Jin-Cheng [1 ]
Li, Yuan-Yao [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Chem Engn, Chiayi 621, Taiwan
[2] Hsing Wu Coll, Dept Informat Technol, Linkou 244, Taipei County, Taiwan
关键词
D O I
10.1021/jp8058454
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwalled carbon nanotubes (MWCNTs) with uniform diameters (10-20 nm) and high densities per unit area were synthesized in a 5-10 s combustion process using a mixture of butane and air at 880 degrees C. The growth mechanism of MWCNTs was studied via time-sequence experiments to reveal that the catalyst nanoparticles were formed on a 3 nm thick Ni-coated wafer after 3 s in the flame. Short and uniform MWCNTs were synthesized using a 5 s process, whereas MWCNTs with a maximum density and length were obtained using a 10 s process. It is believed that both the synthesis temperature and the combustion products, such as CO, H2O, C-n,H-m (n = 1 or 2), and polycyclic aromatic hydrocarbons, play an important role in the growth of the MWCNTs. Furthermore, the field emission properties of the combustion-generated carbon nanotube (CNT) films were studied, and an emission current density of 0.18 mA/cm(2) at 7 V/mu m was obtained. These results suggested that this fabrication method provided rapid and direct growth of field-emission CNTs on a desired substrate.
引用
收藏
页码:19224 / 19230
页数:7
相关论文
共 43 条
[1]   Electric field induced growth of well aligned carbon nanotubes from ethanol flames [J].
Bao, QL ;
Pan, CX .
NANOTECHNOLOGY, 2006, 17 (04) :1016-1021
[2]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[3]   Diameter-controlled synthesis of carbon nanotubes [J].
Cheung, CL ;
Kurtz, A ;
Park, H ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2429-2433
[4]   Fully sealed, high-brightness carbon-nanotube field-emission display [J].
Choi, WB ;
Chung, DS ;
Kang, JH ;
Kim, HY ;
Jin, YW ;
Han, IT ;
Lee, YH ;
Jung, JE ;
Lee, NS ;
Park, GS ;
Kim, JM .
APPLIED PHYSICS LETTERS, 1999, 75 (20) :3129-3131
[5]   Selective gas detection using a carbon nanotube sensor [J].
Chopra, S ;
McGuire, K ;
Gothard, N ;
Rao, AM ;
Pham, A .
APPLIED PHYSICS LETTERS, 2003, 83 (11) :2280-2282
[6]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[7]   Review of hydrogen storage by adsorption in carbon nanotubes [J].
Darkrim Lamari, F ;
Malbrunot, P ;
Tartaglia, GP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :193-202
[8]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[9]  
Etheridge RE, 2001, WEED TECHNOL, V15, P75, DOI 10.1614/0890-037X(2001)015[0075:EOVTNA]2.0.CO
[10]  
2