Spontaneously broken spacetime symmetries and Goldstone's theorem

被引:203
作者
Low, I [1 ]
Manohar, AV
机构
[1] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1103/PhysRevLett.88.101602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Goldstone's theorem states that there is a massless mode for each broken symmetry generator. It has been known for a long time that the naive generalization of this counting fails to give the correct number of massless modes for spontaneously broken spacetime symmetries. We explain how to get the right count of massless modes in the general case, and discuss examples involving spontaneously broken Poincare and conformal invariance.
引用
收藏
页码:4 / 101602
页数:4
相关论文
共 13 条
[1]   A NEW IMPROVED ENERGY-MOMENTUM TENSOR [J].
CALLAN, CG ;
COLEMAN, S ;
JACKIW, R .
ANNALS OF PHYSICS, 1970, 59 (01) :42-&
[2]   STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS .I. [J].
COLEMAN, S ;
WESS, J ;
ZUMINO, B .
PHYSICAL REVIEW, 1969, 177 (5P1) :2239-&
[3]  
Coleman S., 1985, ASPECTS SYMMETRY
[4]   FIELD THEORIES WITH SUPERCONDUCTOR SOLUTIONS [J].
GOLDSTONE, J .
NUOVO CIMENTO, 1961, 19 (01) :154-164
[5]   BROKEN SYMMETRIES [J].
GOLDSTONE, J ;
SALAM, A ;
WEINBERG, S .
PHYSICAL REVIEW, 1962, 127 (03) :965-+
[6]   SPONTANEOUS BREAKDOWN OF CONFORMAL SYMMETRY [J].
ISHAM, CJ ;
SALAM, A ;
STRATHDEE, J .
PHYSICS LETTERS B, 1970, B 31 (05) :300-+
[7]  
Ivanov E.A., 1975, Teor. Mat. Fiz., V25, P164
[8]   HOW TO COUNT GOLDSTONE BOSONS [J].
NIELSEN, HB ;
CHADHA, S .
NUCLEAR PHYSICS B, 1976, 105 (03) :445-453
[9]   SCALE AND CONFORMAL-INVARIANCE IN QUANTUM-FIELD THEORY [J].
POLCHINSKI, J .
NUCLEAR PHYSICS B, 1988, 303 (02) :226-236
[10]  
POLCHINSKI J, HEPTH9210046