mTOR signaling: implications for cancer and anticancer therapy

被引:168
作者
Petroulakis, E [1 ]
Mamane, Y [1 ]
Le Bacquer, O [1 ]
Shahbazian, D [1 ]
Sonenberg, N [1 ]
机构
[1] McGill Univ, Ctr Canc, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
关键词
translational control; eIF4F; eIF4E binding proteins; rapamycin; mTOR; malignant transformation;
D O I
10.1038/sj.bjc.6602902
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Mounting evidence links deregulated protein synthesis to tumorigenesis via the translation initiation factor complex eIF4F. Components of this complex are often overexpressed in a large number of cancers and promote malignant transformation in experimental systems. mTOR affects the activity of the eIF4F complex by phosphorylating repressors of the eIF4F complex, the eIF4E binding proteins. The immunosuppressant rapamycin specifically inhibits mTOR activity and retards cancer growth. Importantly, mutations in upstream negative regulators of mTOR cause hamartomas, haemangiomas, and cancers that are sensitive to rapamycin treatment. Such mutations lead to increased eIF4F formation and consequently to enhanced translation initiation and cell growth. Thus, inhibition of translation initiation through targeting the mTOR-signalling pathway is emerging as a promising therapeutic option.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 38 条
[1]   Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells [J].
Avdulov, S ;
Li, S ;
Michalek, V ;
Burrichter, D ;
Peterson, M ;
Perlman, DM ;
Manivel, JC ;
Sonenberg, N ;
Yee, D ;
Bitterman, PB ;
Polunovsky, VA .
CANCER CELL, 2004, 5 (06) :553-563
[2]   Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation [J].
Bardeesy, N ;
Sinha, M ;
Hezel, AF ;
Signoretti, S ;
Hathaway, NA ;
Sharpless, NE ;
Loda, M ;
Carrasco, DR ;
DePinho, RA .
NATURE, 2002, 419 (6903) :162-167
[3]   The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation [J].
Beuvink, I ;
Boulay, A ;
Fumagalli, S ;
Zilbermann, F ;
Ruetz, S ;
O'Reilly, T ;
Natt, F ;
Hall, J ;
Lane, HA ;
Thomas, G .
CELL, 2005, 120 (06) :747-759
[4]   Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development [J].
Burchert, A ;
Wang, Y ;
Cai, D ;
von Bubnoff, N ;
Paschka, P ;
Müller-Brüsselbach, S ;
Ottmann, OG ;
Duyster, J ;
Hochhaus, A ;
Neubauer, A .
LEUKEMIA, 2005, 19 (10) :1774-1782
[5]   MicroRNAs as oncogenes and tumor suppressors [J].
Chen, CZ .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (17) :1768-1771
[6]   eIF-4E expression and its role in malignancies and metastases [J].
De Benedetti, A ;
Graff, JR .
ONCOGENE, 2004, 23 (18) :3189-3199
[7]   4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin [J].
Dilling, MB ;
Germain, GS ;
Dudkin, L ;
Jayaraman, AL ;
Zhang, XW ;
Harwood, FC ;
Houghton, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (16) :13907-13917
[8]   Metformin and reduced risk of cancer in diabetic patients [J].
Evans, JMM ;
Donnelly, LA ;
Emslie-Smith, AM ;
Alessi, DR ;
Morris, AD .
BMJ-BRITISH MEDICAL JOURNAL, 2005, 330 (7503) :1304-1305
[9]  
Fumagalli S, 2000, COLD SPRING HARBOR M, V39, P695
[10]   eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation [J].
Gingras, AC ;
Raught, B ;
Sonenberg, N .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :913-963