Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China

被引:126
作者
Wang, Ronghuan [1 ]
Yu, Yongtao [1 ]
Zhao, Jiuran [2 ]
Shi, Yunsu [1 ]
Song, Yanchun [1 ]
Wang, Tianyu [1 ]
Li, Yu [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Maize Res Ctr, Beijing 100097, Peoples R China
关键词
D O I
10.1007/s00122-008-0852-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations are of great importance and the prerequisite for association mapping. In the present study, 145 genome-wide SSR markers were used to assess the genetic diversity, population structure, and LD of a set of 95 maize inbred lines which represented the Chinese maize inbred lines. Results showed that the population included a diverse genetic variation. A model-based population structure analysis subdivided the inbred lines into four subgroups that correspond to the four major empirical germplasm origins in China, i.e., Lancaster, Reid, Tangsipingtou and P. Among all of the inbred lines, 65.3% were assigned into the corresponding subgroups; others were assigned into a "mixed" subgroup. LD was significant at a 0.01 level between 63.89% of the SSR pairs in the entire sample and with a range of 18.75-40.28% in the subgroups. Among factors influencing LD, linkage was the major cause for LD of SSR loci. The results suggested that the population may be used in the detection of genome-wide SSR marker-phenotype association.
引用
收藏
页码:1141 / 1153
页数:13
相关论文
共 43 条
[1]   Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.) [J].
Andersen, JR ;
Schrag, T ;
Melchinger, AE ;
Zein, I ;
Lübberstedt, T .
THEORETICAL AND APPLIED GENETICS, 2005, 111 (02) :206-217
[2]  
BOTSTEIN D, 1980, AM J HUM GENET, V32, P314
[3]   Maize adaptation to temperate climate:: Relationship between population structure and polymorphism in the Dwarf8 gene [J].
Camus-Kulandaivelu, L ;
Veyrieras, JB ;
Madur, D ;
Combes, V ;
Fourmann, M ;
Barraud, S ;
Dubreuil, P ;
Gouesnard, B ;
Manicacci, D ;
Charcosset, A .
GENETICS, 2006, 172 (04) :2449-2463
[4]   SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J].
Ching, A ;
Caldwell, KS ;
Jung, M ;
Dolan, M ;
Smith, OS ;
Tingey, S ;
Morgante, M ;
Rafalski, AJ .
BMC GENETICS, 2002, 3 (1)
[5]   PROTECTIVE EFFECT OF APOLIPOPROTEIN-E TYPE-2 ALLELE FOR LATE-ONSET ALZHEIMER-DISEASE [J].
CORDER, EH ;
SAUNDERS, AM ;
RISCH, NJ ;
STRITTMATTER, WJ ;
SCHMECHEL, DE ;
GASKELL, PC ;
RIMMLER, JB ;
LOCKE, PA ;
CONNEALLY, PM ;
SCHMADER, KE ;
SMALL, GW ;
ROSES, AD ;
HAINES, JL ;
PERICAKVANCE, MA .
NATURE GENETICS, 1994, 7 (02) :180-184
[6]   Maize association population: a high-resolution platform for quantitative trait locus dissection [J].
Flint-Garcia, SA ;
Thuillet, AC ;
Yu, JM ;
Pressoir, G ;
Romero, SM ;
Mitchell, SE ;
Doebley, J ;
Kresovich, S ;
Goodman, MM ;
Buckler, ES .
PLANT JOURNAL, 2005, 44 (06) :1054-1064
[7]   Structure of linkage disequilibrium in plants [J].
Flint-Garcia, SA ;
Thornsberry, JM ;
Buckler, ES .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :357-374
[8]   Linkage disequilibrium and association studies in higher plants: Present status and future prospects [J].
Gupta, PK ;
Rustgi, S ;
Kulwal, PL .
PLANT MOLECULAR BIOLOGY, 2005, 57 (04) :461-485
[9]  
Huttley GA, 1999, GENETICS, V152, P1711
[10]  
KNOWLER WC, 1988, AM J HUM GENET, V43, P520