The euryarchaeotes, a subdomain of Archaea, survive on a single DNA polymerase: Fact or farce?

被引:39
作者
Ishino, Y [1 ]
Cann, IKO [1 ]
机构
[1] Biomol Engn Res Inst, Dept Mol Biol, Osaka 5650874, Japan
关键词
D O I
10.1266/ggs.73.323
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Archaea is now recognized as the third domain of life. Since their discovery, much effort has been directed towards understanding the molecular biology and biochemistry of Archaea. The objective is to comprehend the complete structure and the depth of the phylogenetic tree of life. DNA replication is one of the most important events in living organisms and DNA polymerase is the key enzyme in the molecular machinery which drives the process. All archaeal DNA polymerases were thought to belong to family B. This was because all of the products of pol genes that had been cloned showed amino acid sequence similarities to those of this family, which includes three eukaryal DNA replicases and Escherichia coli DNA polymerase II. Recently, we found al new heterodimeric DNA polymerase from the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for the subunits of this DNA polymerase are conserved in the euryarchaeotes whose genomes have been completely sequenced. The biochemical characteristics of the novel DNA polymerase family suggest that its members play an important role in DNA replication within euryarchaeal cells. We review here our current knowledge on DNA polymerases in Archaea with emphasis ton the novel DNA polymerase discovered in Euryarchaeota.
引用
收藏
页码:323 / 336
页数:14
相关论文
共 74 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Polymerases and the replisome: Machines within machines [J].
Baker, TA ;
Bell, SP .
CELL, 1998, 92 (03) :295-305
[3]   Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences [J].
Barns, SM ;
Delwiche, CF ;
Palmer, JD ;
Pace, NR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (17) :9188-9193
[4]   Archaea and the cell cycle [J].
Bernander, R .
MOLECULAR MICROBIOLOGY, 1998, 29 (04) :955-961
[5]  
Blochl E, 1997, EXTREMOPHILES, V1, P14
[6]   Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii [J].
Bult, CJ ;
White, O ;
Olsen, GJ ;
Zhou, LX ;
Fleischmann, RD ;
Sutton, GG ;
Blake, JA ;
FitzGerald, LM ;
Clayton, RA ;
Gocayne, JD ;
Kerlavage, AR ;
Dougherty, BA ;
Tomb, JF ;
Adams, MD ;
Reich, CI ;
Overbeek, R ;
Kirkness, EF ;
Weinstock, KG ;
Merrick, JM ;
Glodek, A ;
Scott, JL ;
Geoghagen, NSM ;
Weidman, JF ;
Fuhrmann, JL ;
Nguyen, D ;
Utterback, TR ;
Kelley, JM ;
Peterson, JD ;
Sadow, PW ;
Hanna, MC ;
Cotton, MD ;
Roberts, KM ;
Hurst, MA ;
Kaine, BP ;
Borodovsky, M ;
Klenk, HP ;
Fraser, CM ;
Smith, HO ;
Woese, CR ;
Venter, JC .
SCIENCE, 1996, 273 (5278) :1058-1073
[7]  
CAMBON M, 1996, GENE ORG DNA POLYM A
[8]   A heterodimeric DNA polymerase: Evidence that members of Euryarchaeota possess a distinct DNA polymerase [J].
Cann, IKO ;
Komori, K ;
Toh, H ;
Kanai, S ;
Ishino, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14250-14255
[9]   PROTEIN SPLICING - EXCISION OF INTERVENING SEQUENCES AT THE PROTEIN LEVEL [J].
COOPER, AA ;
STEVENS, TH .
BIOESSAYS, 1993, 15 (10) :667-674
[10]   AN ATTEMPT TO UNIFY THE STRUCTURE OF POLYMERASES [J].
DELARUE, M ;
POCH, O ;
TORDO, N ;
MORAS, D ;
ARGOS, P .
PROTEIN ENGINEERING, 1990, 3 (06) :461-467