Interaction of KCNE subunits with the KCNQ1 K+ channel pore

被引:86
作者
Panaghie, G
Tai, KK
Abbott, GW
机构
[1] Cornell Univ, Weill Med Coll, Greenberg Div Cardiol, Dept Med, New York, NY 10021 USA
[2] Cornell Univ, Weill Med Coll, Dept Pharmacol, New York, NY 10021 USA
[3] Long Beach Mem Med Ctr, Parkinsons & Movement Disorder Res Lab, Long Beach, CA 90806 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2006年 / 570卷 / 03期
关键词
D O I
10.1113/jphysiol.2005.100644
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
KCNQ1 alpha subunits form functionally distinct potassium channels by coassembling with KCNE ancillary subunits MinK and MiRP2. MinK-KCNQ1 channels generate the slowly activating, voltage-dependent cardiac I-Ks current. MiRP2-KCNQ1 channels form a constitutively active current in the colon. The structural basis for these contrasting channel properties, and the mechanisms of alpha subunit modulation by KCNE subunits, are not fully understood. Here, scanning mutagenesis located a tryptophan-tolerant region at positions 338-340 within the KCNQ1 pore-lining S6 domain, suggesting an exposed region possibly amenable to interaction with transmembrane ancillary subunits. This hypothesis was tested using concomitant mutagenesis in KCNQ1 and in the membrane-localized 'activation triplet' regions of MinK and MiRP2 to identify pairs of residues that interact to control KCNQ1 activation. Three pairs of mutations exerted dramatic effects, ablating channel function or either removing or restoring control of KCNQ1 activation. The results place KCNE subunits close to the KCNQ1 pore, indicating interaction of MiRP2-72 with KCNQ1-338; and MinK-59,58 with KCNQ1-339, 340. These data are consistent either with perturbation of the S6 domain by MinK or MiRP2, dissimilar positioning of MinK and MiRP2 within the channel complex, or both. Further, the results suggest specifically that two of the interactions, MiRP2-72/KCNQ1-338 and MinK-58/KCNQ1-340, are required for the contrasting gating effects of MinK and MiRP2.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 34 条
[1]   Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism [J].
Abbott, GW ;
Goldstein, SAN .
FASEB JOURNAL, 2002, 16 (03) :390-400
[2]   KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current [J].
Angelo, K ;
Jespersen, T ;
Grunnet, M ;
Nielsen, MS ;
Klaerke, DA ;
Olesen, SP .
BIOPHYSICAL JOURNAL, 2002, 83 (04) :1997-2006
[3]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[4]   KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel [J].
Bockenhauer, D ;
Zilberberg, N ;
Goldstein, SAN .
NATURE NEUROSCIENCE, 2001, 4 (05) :486-491
[5]   Pore- and state-dependent cadmium block of IKs channels formed with MinK-55C and wild-type KCNQ1 subunits [J].
Chen, HJ ;
Sesti, F ;
Goldstein, SAN .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3679-3689
[6]   Blocker protection in the pore of a voltage-gated K+ channel and its structural implications [J].
del Camino, D ;
Holmgren, M ;
Liu, Y ;
Yellen, G .
NATURE, 2000, 403 (6767) :321-325
[7]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[8]   KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels [J].
Gage, SD ;
Kobertz, WR .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 124 (06) :759-771
[9]   hKCNE4 inhibits the hKCNQ1 potassium current without affecting the activation kinetics [J].
Grunnet, M ;
Olesen, SP ;
Klaerke, DA ;
Jespersen, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 328 (04) :1146-1153
[10]   KCNE4 is an inhibitory subunit to the KCNQ1 channel [J].
Grunnet, M ;
Jespersen, T ;
Rasmussen, HB ;
Ljungstrom, T ;
Jorgensen, NK ;
Olesen, SP ;
Klaerke, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (01) :119-130