A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues

被引:30
作者
Chibuk, Thea K. [1 ]
Bischof, Jocelyn M. [1 ]
Wevrick, Rachel [1 ]
机构
[1] Univ Alberta, Dept Med Genet, Edmonton, AB, Canada
关键词
Neurodevelopmental Disorder; Autistic Disorder; Angelman Syndrome; UniGene Cluster; Image Clone;
D O I
10.1186/1471-2156-2-22
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Proximal chromosome 15q is implicated in neurodevelopmental disorders including Prader-Willi and Angelman syndromes, autistic disorder and developmental abnormalities resulting from chromosomal deletions or duplications. A subset of genes in this region are subject to genomic imprinting, the expression of the gene from only one parental allele. Results: We have now identified the NDNL2 (also known as MAGE-G) gene within the 15q autistic disorder susceptibility region and have mapped its murine homolog to the region of conserved synteny near necdin (Ndn) on mouse Chr 7. NDNL2/MAGE-G is a member of a large gene family that includes the X-linked MAGE cluster, MAGED1 (NRAGE), MAGEL2 and NDN, where the latter two genes are implicated in Prader-Willi syndrome. We have now determined that NDNL2/Ndnl2 is widely expressed in mouse and human fetal and adult tissues, and that it is apparently not subject to genomic imprinting by the PWS/AS Imprinting Center. Conclusion: Although NDNL2/MAGE-G in the broadly defined chromosome 15 autistic disorder susceptibility region, it is not likely to be pathogenic based on its wide expression pattern and lack of imprinted expression.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints [J].
Amos-Landgraf, JM ;
Ji, YG ;
Gottlieb, W ;
Depinet, T ;
Wandstrat, AE ;
Cassidy, SB ;
Driscoll, DJ ;
Rogan, PK ;
Schwartz, S ;
Nicholls, RD .
AMERICAN JOURNAL OF HUMAN GENETICS, 1999, 65 (02) :370-386
[2]   Genetic studies in autistic disorder and chromosome 15 [J].
Bass, MP ;
Menold, MR ;
Wolpert, CM ;
Donnelly, SL ;
Ravan, SA ;
Hauser, ER ;
Maddox, LO ;
Vance, JM ;
Abramson, RK ;
Wright, HH ;
Gilbert, JR ;
Cuccaro, ML ;
DeLong, GR ;
Pericak-Vance, MA .
NEUROGENETICS, 2000, 2 (04) :219-226
[3]   De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch [J].
Bielinska, B ;
Blaydes, SM ;
Buiting, K ;
Yang, T ;
Krajewska-Walasek, M ;
Horsthemke, B ;
Brannan, CI .
NATURE GENETICS, 2000, 25 (01) :74-78
[4]   Mapping of the human and murine X11-like genes (APBA2 and Apba2), the murine Fe65 gene (Apbb1), and the human Fe65-like gene (APBB2):: genes encoding phosphotyrosine-binding domain proteins that interact with the Alzheimer's disease amyloid precursor protein [J].
Blanco, G ;
Irving, NG ;
Brown, SDM ;
Miller, CCJ ;
McLoughlin, DM .
MAMMALIAN GENOME, 1998, 9 (06) :473-475
[5]   The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region [J].
Boccaccio, I ;
Glatt-Deeley, H ;
Watrin, F ;
Roëckel, N ;
Lalande, M ;
Muscatelli, F .
HUMAN MOLECULAR GENETICS, 1999, 8 (13) :2497-2505
[6]   Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization [J].
Cavaillé, J ;
Buiting, K ;
Kiefmann, M ;
Lalande, M ;
Brannan, CI ;
Horsthemke, B ;
Bachellerie, JP ;
Brosius, J ;
Hüttenhofer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14311-14316
[7]  
Chomez P, 2001, CANCER RES, V61, P5544
[8]   Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13) [J].
Christian, SL ;
Fantes, JA ;
Mewborn, SK ;
Huang, B ;
Ledbetter, DH .
HUMAN MOLECULAR GENETICS, 1999, 8 (06) :1025-1037
[9]   Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which is highly expressed in brain [J].
de los Santos, T ;
Schweizer, J ;
Rees, CA ;
Francke, U .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (05) :1067-1082
[10]   Disruption of the mouse necdin gene results in early post-natal lethality [J].
Gérard, M ;
Hernandez, L ;
Wevrick, R ;
Stewart, CL .
NATURE GENETICS, 1999, 23 (02) :199-202