Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis

被引:140
作者
Shi, Ruixia [1 ]
Yang, Ping [1 ]
Dong, Xiaobin [1 ]
Ma, Qian [1 ]
Zhang, Aiyu [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
Growth mechanism; Flower-like ZnO; ZnO nanorod arrays; Zinc substrate; Hydrothermal synthesis; THERMAL EVAPORATION; SOLUTION ROUTE; NANOSTRUCTURES; NANOWIRES; MECHANISM; SINGLE; MICROSTRUCTURES; MICROSPHERES; SURFACE;
D O I
10.1016/j.apsusc.2012.09.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flower-like ZnO with various morphologies on ZnO nanorod arrays have been hydrothermally fabricated using zinc substrates at low temperature (70 degrees C). The time-dependent experiments indicated that both dense ZnO nanorod arrays and flower-like ZnO were created when the reaction time is 30 min. A growth mechanism was proposed to account for the growth of the flower-like ZnO on ZnO nanorod arrays. In situ growth caused the generation of dense ZnO nanorod arrays that were almost perpendicular to the surface of a zinc substrate. Due to the different rate of nucleation and crystal growth the morphology of flower-like ZnO on the top of ZnO nanorod arrays varied with the concentration of OH-. The ionic radius of alkali metal hydroxide used to generate Zn(OH)(4)(2-) ions greatly affected the morphology of ZnO. Owing to the small quantity of ZnO nuclei and Zn(OH)(4)(2-) the flower-like ZnO on ZnO nanorod arrays became fewer when lowering the concentration of Zn2+ and OH- while keeping the ratio between them. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
[1]   Ethylene glycol assisted hydrothermal synthesis of flower like ZnO architectures [J].
Ashoka, S. ;
Nagaraju, G. ;
Tharamani, C. N. ;
Chandrappa, G. T. .
MATERIALS LETTERS, 2009, 63 (11) :873-876
[2]   A Study of Drop-Coated and Chemical Bath-Deposited Buffer Layers for Vapor Phase Deposition of Large Area, Aligned, Zinc Oxide Nanorod Arrays [J].
Byrne, D. ;
McGlynn, E. ;
Kumar, K. ;
Biswas, M. ;
Henry, M. O. ;
Hughes, G. .
CRYSTAL GROWTH & DESIGN, 2010, 10 (05) :2400-2408
[3]   Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers [J].
Calhoun, M. F. ;
Sanchez, J. ;
Olaya, D. ;
Gershenson, M. E. ;
Podzorov, V. .
NATURE MATERIALS, 2008, 7 (01) :84-89
[4]   Room temperature chemical synthesis of flower-like ZnO nanostructures [J].
Chakraborty, S. ;
Kole, A. K. ;
Kumbhakar, P. .
MATERIALS LETTERS, 2012, 67 (01) :362-364
[5]   Influence of Polyethyleneimine and Ammonium on the Growth of ZnO Nanowires by Hydrothermal Method [J].
Chen, Liang-Yih ;
Yin, Yu-Tung ;
Chen, Ching-Hsiang ;
Chiou, Jau-Wern .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (43) :20913-20919
[6]   Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process [J].
Cheng, J. P. ;
Zhang, X. B. ;
Tao, X. Y. ;
Lu, H. M. ;
Luo, Z. Q. ;
Liu, F. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (21) :10348-10353
[7]  
Daragh B., 2011, CRYST GROWTH DES, V11, P5378
[8]   Zinc oxide microtubes prepared by optical thermal evaporation [J].
Ding, QP ;
Cao, QQ ;
Huang, HB ;
Yang, SG ;
Zhao, XN ;
Du, YW .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (01) :46-49
[9]   Structures and properties of Zn(II) coordination polymers [J].
Erxleben, A .
COORDINATION CHEMISTRY REVIEWS, 2003, 246 (1-2) :203-228
[10]   Electrical properties of ZnO nanowire-field effect transistors characterized with scanning probes [J].
Fan, ZY ;
Lu, JG .
APPLIED PHYSICS LETTERS, 2005, 86 (03) :1-3