Crucial role of Lys423 in the electron transfer of neuronal nitric-oxide synthase

被引:35
作者
Shimanuki, T [1 ]
Sato, H [1 ]
Daff, S [1 ]
Sagami, I [1 ]
Shimizu, T [1 ]
机构
[1] Tohoku Univ, Inst Chem React Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
D O I
10.1074/jbc.274.38.26956
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric-oxide synthase (NOS) is composed of an oxygenase domain having cytochrome P450-type heme active site and a reductase domain having FAD- and FMN-binding sites, To investigate the route of electron transfer from the reductase domain to the heme, we generated mutants at Lys(423) in the heme proximal site of neuronal NOS and examined the catalytic activities, electron transfer rates, and NADPH oxidation rates. A K423E mutant showed no NO formation activity (<0.1 nmol/min/nmol heme), in contrast with that (72 nmol/min/nmol heme) of the wild type enzyme. The electron transfer rate (0.01 min(-1)) of the K423E on addition of excess NADPH was much slower than that (>10 min(-1)) of the wild type enzyme. From the crystal structure of the oxygenase domain of endothelial NOS, Lys(423) of neuronal NOS is likely to interact with Trp(409) which lies in contact with the heme plane and with Cys(415), the axial ligand. It is also exposed to solvent and lies in the region where the heme is closest to the protein surface. Thus, it seems likely that ionic interactions between Lys(423) and the reductase domain may help to form a flavin to heme electron transfer pathway.
引用
收藏
页码:26956 / 26961
页数:6
相关论文
共 37 条
[1]   Analysis of neuronal NO synthase under single-turnover conditions: Conversion of N-omega-hydroxyarginine to nitric oxide and citrulline [J].
AbuSoud, HM ;
Presta, A ;
Mayer, B ;
Stuehr, DJ .
BIOCHEMISTRY, 1997, 36 (36) :10811-10816
[2]   Reaction of neuronal nitric-oxide synthase with oxygen at low temperature - Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin [J].
Bec, N ;
Gorren, ACF ;
Voelker, C ;
Mayer, B ;
Lange, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (22) :13502-13508
[3]   Formation of N-delta-cyanoornithine from N-G-hydroxy-L-arginine and hydrogen peroxide by neuronal nitric oxide synthase: Implications for mechanism [J].
Clague, MJ ;
Wishnok, JS ;
Marletta, MA .
BIOCHEMISTRY, 1997, 36 (47) :14465-14473
[4]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126
[5]  
DEMONTELLANO PRO, 1995, CYTOCHROME P459 STRU
[6]  
Feelisch M., 1996, METHODS NITRIC OXIDE
[7]   Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation [J].
Fischmann, TO ;
Hruza, A ;
Niu, XD ;
Fossetta, JD ;
Lunn, CA ;
Dolphin, E ;
Prongay, AJ ;
Reichert, P ;
Lundell, DJ ;
Narula, SK ;
Weber, PC .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (03) :233-242
[8]  
Groves John T., 1995, P3
[9]  
GUENGERICH FP, 1991, J BIOL CHEM, V266, P10019
[10]  
IGNARRO L, 1996, NITRIC OXIDE BIOCH M