Simulation of Sahel drought in the 20th and 21st centuries

被引:320
作者
Held, IM
Delworth, TL
Lu, J
Findell, KL
Knutson, TR
机构
[1] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[2] Univ Corp Atmospher Res, Princeton, NJ 08542 USA
关键词
African drought; climate change; global warming;
D O I
10.1073/pnas.0509057102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Sahel, the transition zone between the Saharan desert and the rainforests of Central Africa and the Guinean Coast, experienced a severe drying trend from the 1950s to the 1980s, from which there has been partial recovery. Continuation of either the drying trend or the more recent ameliorating trend would have far-ranging implications for the economy and ecology of the region. Coupled atmosphere/ocean climate models being used to simulate the future climate have had difficulty simulating Sahel rainfall variations comparable to those observed, thus calling into question their ability to predict future climate change in this region. We describe simulations using a new global climate model that capture several aspects of the 20th century rainfall record in the Sahel. An ensemble mean over eight realizations shows a drying trend in the second half of the century of nearly half of the observed amplitude. Individual realizations can be found that display striking similarity to the observed time series and drying pattern, consistent with the hypothesis that the observations are a superposition of an externally forced trend and internal variability. The drying trend in the ensemble mean of the model simulations is attributable to anthropogenic forcing, partly to an increase in aerosol loading and partly to an increase in greenhouse gases. The model projects a drier Sahel in the future, due primarily to increasing greenhouse gases.
引用
收藏
页码:17891 / 17896
页数:6
相关论文
共 34 条
[1]   The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation [J].
Bader, J ;
Latif, M .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (22) :CLM7-1
[2]  
BADER J, 2005, IN PRESS J CLIMATE
[3]   INTERPRETATION OF CLOUD-CLIMATE FEEDBACK AS PRODUCED BY 14 ATMOSPHERIC GENERAL-CIRCULATION MODELS [J].
CESS, RD ;
POTTER, GL ;
BLANCHET, JP ;
BOER, GJ ;
GHAN, SJ ;
KIEHL, JT ;
LETREUT, H ;
LI, ZX ;
LIANG, XZ ;
MITCHELL, JFB ;
MORCRETTE, JJ ;
RANDALL, DA ;
RICHES, MR ;
ROECKNER, E ;
SCHLESE, U ;
SLINGO, A ;
TAYLOR, KE ;
WASHINGTON, WM ;
WETHERALD, RT ;
YAGAI, I .
SCIENCE, 1989, 245 (4917) :513-516
[4]   Cloud feedback in atmospheric general circulation models: An update [J].
Cess, RD ;
Zhang, MH ;
Ingram, WJ ;
Potter, GL ;
Alskseev, V ;
Barker, HW ;
Cohen-Solal, E ;
Colman, RA ;
Dazlich, DA ;
Del Genio, AD ;
Dix, MR ;
Dymnikov, V ;
Esch, M ;
Fowler, LD ;
Fraser, JR ;
Galin, V ;
Gates, WL ;
Hack, JJ ;
Kiehl, JT ;
Le Treut, H ;
Lo, KKW ;
McAvaney, BJ ;
Meleshko, VP ;
Morcrette, JJ ;
Randall, DA ;
Roeckner, E ;
Royer, JF ;
Schlesinger, ME ;
Sporyshev, PV ;
Timbal, B ;
Volodin, EM ;
Taylor, KE ;
Wang, W ;
Wetherald, RT .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D8) :12791-12794
[5]   DYNAMICS OF DESERTS AND DROUGHT IN SAHEL [J].
CHARNEY, JG .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1975, 101 (428) :193-202
[6]   The recent Sahel drought is real [J].
Dai, A ;
Lamb, PJ ;
Trenberth, KE ;
Hulme, M ;
Jones, PD ;
Xie, PP .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2004, 24 (11) :1323-1331
[7]  
DELWORTH TL, 2005, IN PRESS J CLIMATE
[8]   SAHEL RAINFALL AND WORLDWIDE SEA TEMPERATURES, 1901-85 [J].
FOLLAND, CK ;
PALMER, TN ;
PARKER, DE .
NATURE, 1986, 320 (6063) :602-607
[9]   Evolution of the relationship between near global and Atlantic SST modes and the rainy season in west Africa: statistical analyses and sensitivity experiments [J].
Fontaine, B ;
Trzaska, S ;
Janicot, S .
CLIMATE DYNAMICS, 1998, 14 (05) :353-368
[10]   Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales [J].
Giannini, A ;
Saravanan, R ;
Chang, P .
SCIENCE, 2003, 302 (5647) :1027-1030