Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons

被引:74
作者
Dai, Y [1 ]
Fukuoka, T [1 ]
Wang, H [1 ]
Yamanaka, H [1 ]
Obata, K [1 ]
Tokunaga, A [1 ]
Noguchi, K [1 ]
机构
[1] Hyogo Med Univ, Dept Anat & Neurosci, Nishinomiya, Hyogo 6638501, Japan
关键词
ATP; extracellular signal-regulated protein kinase; phosphorylation; dorsal root ganglion; pain stimuli; mechanical hyperalgesia;
D O I
10.1016/j.pain.2003.12.034
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
The mechanism of mechanical hyperalgesia in inflammation might involve a 'mechanochemical' process whereby stretch evokes the release of adenosine 5'-triphosphate (ATP) from the damaged tissue that then excites nearby primary sensory nerve terminals. In the present study, phosphorylated extracellular signal-regulated protein kinase (pERK) immunoreactivity was used as a marker indicating functional activation of primary afferent neurons to examine the P2X receptor-mediated noxious response in DRG neurons in a rat model of peripheral inflammation. We found that very few pERK-labeled DRG neurons were detected in normal rats after alpha, beta methylene-ATP (alphaBme-ATP) intraplantar injection. However, a number of DRG neurons were labeled for pERK after alphabetame-ATP injection to the complete Freund's adjuvant (CFA) induced inflamed paw. Seventy-three percent of pERK-labeled DRG neurons co-expressed the P2X3 receptor. After mechanical noxious stimulation to the hind paw of CFA-inflamed rats, we found many more pERK-labeled neurons compared to those in the normal rats. Administration of the P2X3 receptor antagonists, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid or 2'- (or 3)-O-(trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), significantly decreased the mechanical stimulation-evoked pERK labeling in CFA-inflamed rats, but not in normal rats. We also found the recruitment of neurons with myelinated A fibers labeled for pERK in CFA-inflamed rats, which was reversed by P2X3 receptor antagonists. Moreover, TNP-ATP dose dependently reduced the mechanical hypersensitivity of CFA rats. These data suggest that the P2X receptors in primary afferent neurons increase their activity with enhanced sensitivity of the intracellular ERK signaling pathway during inflammation and then contribute to the hypersensitivity to mechanical noxious stimulation in the inflammatory state. (C) 2004 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 266
页数:9
相关论文
共 37 条
[1]   Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2 [J].
Amaya, F ;
Decosterd, I ;
Samad, TA ;
Plumpton, C ;
Tate, S ;
Mannion, RJ ;
Costigan, M ;
Woolf, CJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (04) :331-342
[2]  
Bennett DLH, 1998, J NEUROSCI, V18, P3059
[3]   Purine-mediated signalling in pain and visceral perception [J].
Burnstock, G .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (04) :182-188
[4]   P2X receptors in sensory neurones [J].
Burnstock, G .
BRITISH JOURNAL OF ANAESTHESIA, 2000, 84 (04) :476-488
[5]   Purinergic receptors: Their role in nociception and primary afferent neurotransmission [J].
Burnstock, G ;
Wood, JN .
CURRENT OPINION IN NEUROBIOLOGY, 1996, 6 (04) :526-532
[6]   QUANTITATIVE ASSESSMENT OF TACTILE ALLODYNIA IN THE RAT PAW [J].
CHAPLAN, SR ;
BACH, FW ;
POGREL, JW ;
CHUNG, JM ;
YAKSH, TL .
JOURNAL OF NEUROSCIENCE METHODS, 1994, 53 (01) :55-63
[7]   Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition [J].
Chuang, HH ;
Prescott, ED ;
Kong, HY ;
Shields, S ;
Jordt, SE ;
Basbaum, AI ;
Chao, MV ;
Julius, D .
NATURE, 2001, 411 (6840) :957-962
[8]  
Dai Y, 2002, J NEUROSCI, V22, P7737
[9]   ATP, P2X receptors and pain pathways [J].
Ding, YN ;
Cesare, P ;
Drew, L ;
Nikitaki, D ;
Wood, JN .
JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM, 2000, 81 (1-3) :289-294
[10]   P2X receptors in peripheral neurons [J].
Dunn, PM ;
Zhong, Y ;
Burnstock, G .
PROGRESS IN NEUROBIOLOGY, 2001, 65 (02) :107-134