Inactivation of the open reading frame slr0399 in Synechocystis sp PCC 6803 functionally complements mutations near the QA niche of photosystem II -: A possible role of slr0399 as a chaperone for quinone binding

被引:37
作者
Ermakova-Gerdes, S
Vermaas, W
机构
[1] Arizona State Univ, Dept Plant Biol, Tempe, AZ 85287 USA
[2] Arizona State Univ, Ctr Study Early Events Photosynthesis, Tempe, AZ 85287 USA
关键词
D O I
10.1074/jbc.274.43.30540
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Synechocystis sp. PCC 6803 triple mutant D2R8 with V247M/A249T/M329I mutations in the D2 subunit of the photosystem II is impaired in Q(A) function, has an apparently mobile Q(A), and is unable to grow photoautotrophically. Several photoautotrophic pseudorevertants of this mutant have been isolated, each of which retained the original psbDI mutations of D2R8 Using a newly developed mapping technique, the site of the secondary mutations has been located in the open reading frame slr0399. Two different nucleotide substitutions and a deletion of about 60% of slr0399 were each shown to restore photoautotrophy in different pseudorevertants of the mutant D2R8, suggesting that inactivation of Slr0399 leads to photoautotrophic growth in D2R8. Indeed, a targeted deletion of slr0399 restores photoautotrophy in D2R8 and in other psbDI mutants impaired in QA function. Slr0399 is similar to the hypothetical protein Ycf39, which is encoded in the cyanelle genome of Cyanophora paradoxa; in the chloroplast genomes of diatoms, dinoflagellates, and red algae; and in the nuclear genome of Arabidopsis thaliana. Slr0399 and Ycf39 have a NAD(P)H binding motif near their N terminus and have some similarity to isoflavone reductase-like proteins and to a subunit of the eukaryotic NADH dehydrogenase complex I. Deletion of slr0399 in wild type Synechocystis sp. PCC 6803 has no significant phenotypic effects other than a decrease in thermotolerance under both photoautotrophic and photomixotrophic conditions. We suggest that Slr0399 is a chaperone-like protein that aids in, but is not essential for, quinone insertion and protein folding around Q(A) in photosystem II. Moreover, as the effects of Slr0399 are not limited to photosystem II, this protein may also be involved in assembly of quinones in other photosynthetic and respiratory complexes.
引用
收藏
页码:30540 / 30549
页数:10
相关论文
共 57 条
[1]   ARABIDOPSIS-THALIANA NADPH OXIDOREDUCTASE HOMOLOGS CONFER TOLERANCE OF YEASTS TOWARD THE THIOL-OXIDIZING DRUG DIAMIDE [J].
BABIYCHUK, E ;
KUSHNIR, S ;
BELLESBOIX, E ;
VANMONTAGU, M ;
INZE, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (44) :26224-26231
[2]   Protein motifs .9. The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins [J].
Bellamacina, CR .
FASEB JOURNAL, 1996, 10 (11) :1257-1269
[3]   MINOR QUINONES OF SOME MYXOPHYCEAE [J].
CARR, NG ;
EXELL, G ;
FLYNN, V ;
HALLAWAY, M ;
TALUKDAR, S .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1967, 120 (03) :503-&
[4]   COMPLEMENTING AMINO-ACID SUBSTITUTIONS WITHIN LOOP-6 OF THE ALPHA-BETA-BARREL ACTIVE-SITE INFLUENCE THE CO2/O2 SPECIFICITY OF CHLOROPLAST RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE [J].
CHEN, ZX ;
YU, WZ ;
LEE, JH ;
DIAO, R ;
SPREITZER, RJ .
BIOCHEMISTRY, 1991, 30 (36) :8846-8850
[5]  
CRAMER WA, 1991, ENERGY TRNASDUCTION
[6]   Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method [J].
Cserzo, M ;
Wallin, E ;
Simon, I ;
vonHeijne, G ;
Elofsson, A .
PROTEIN ENGINEERING, 1997, 10 (06) :673-676
[7]   The complete genome of the hyperthermophilic bacterium Aquifex aeolicus [J].
Deckert, G ;
Warren, PV ;
Gaasterland, T ;
Young, WG ;
Lenox, AL ;
Graham, DE ;
Overbeek, R ;
Snead, MA ;
Keller, M ;
Aujay, M ;
Huber, R ;
Feldman, RA ;
Short, JM ;
Olsen, GJ ;
Swanson, RV .
NATURE, 1998, 392 (6674) :353-358
[8]   (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia - Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase [J].
DinkovaKostova, AT ;
Gang, DR ;
Davin, LB ;
Bedgar, DL ;
Chu, A ;
Lewis, NG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (46) :29473-29482
[9]   THE ISOFLAVONOID PHYTOALEXIN PATHWAY - FROM ENZYMES TO GENES TO TRANSCRIPTION FACTORS [J].
DIXON, RA ;
HARRISON, MJ ;
PAIVA, NL .
PHYSIOLOGIA PLANTARUM, 1995, 93 (02) :385-392
[10]  
DIXON RA, 1983, ADV ENZYMOL RAMB, V55, P1