A composite bacteriophage alters colonization by an intestinal commensal bacterium

被引:180
作者
Duerkop, Breck A. [1 ]
Clements, Charmaine V. [2 ]
Rollins, Darcy [2 ]
Rodrigues, Jorge L. M. [3 ]
Hooper, Lora V. [1 ,2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Immunol, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
[3] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA
基金
美国国家卫生研究院;
关键词
commensal bacteria; microbiota; enterococci; phage predation; PROPHAGE INDUCTION; DNA; GENOMICS; MICROBIOTA;
D O I
10.1073/pnas.1206136109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mammalian intestine is home to a dense community of bacteria and its associated bacteriophage (phage). Virtually nothing is known about how phages impact the establishment and maintenance of resident bacterial communities in the intestine. Here, we examine the phages harbored by Enterococcus faecalis, a commensal of the human intestine. We show that E. faecalis strain V583 produces a composite phage (phi V1/7) derived from two distinct chromosomally encoded prophage elements. One prophage, prophage 1 (phi V1), encodes the structural genes necessary for phage particle production. Another prophage, prophage 7 (phi V7), is required for phage infection of susceptible host bacteria. Production of phi V1/7 is controlled, in part, by nutrient availability, because phi V1/7 particle numbers are elevated by free amino acids in culture and during growth in the mouse intestine. phi V1/7 confers an advantage to E. faecalis V583 during competition with other E. faecalis strains in vitro and in vivo. Thus, we propose that E. faecalis V583 uses phage particles to establish and maintain dominance of its intestinal niche in the presence of closely related competing strains. Our findings indicate that bacteriophages can impact the dynamics of bacterial colonization in the mammalian intestinal ecosystem.
引用
收藏
页码:17621 / 17626
页数:6
相关论文
共 31 条
[1]   5500 Phages examined in the electron microscope [J].
Ackermann, H. -W. .
ARCHIVES OF VIROLOGY, 2007, 152 (02) :227-243
[2]   Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes [J].
Allen, Heather K. ;
Looft, Torey ;
Bayles, Darrell O. ;
Humphrey, Samuel ;
Levine, Uri Y. ;
Alt, David ;
Stanton, Thaddeus B. .
MBIO, 2011, 2 (06)
[3]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[4]   Pretreatment of mice with streptomycin provides a Salmonella enterica serovar typhimurium colitis model that allows analysis of both pathogen and host [J].
Barthel, M ;
Hapfelmeier, S ;
Quintanilla-Martínez, L ;
Kremer, M ;
Rohde, M ;
Hogardt, M ;
Pfeffer, K ;
Rüssmann, H ;
Hardt, WD .
INFECTION AND IMMUNITY, 2003, 71 (05) :2839-2858
[5]   Symbiotic bacteria direct expression of an intestinal bactericidal lectin [J].
Cash, Heather L. ;
Whitham, Cecilia V. ;
Behrendt, Cassie L. ;
Hooper, Lora V. .
SCIENCE, 2006, 313 (5790) :1126-1130
[6]   Prophages and bacterial genomics: what have we learned so far? [J].
Casjens, S .
MOLECULAR MICROBIOLOGY, 2003, 49 (02) :277-300
[7]   Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development [J].
Chang, Jennifer C. ;
LaSarre, Breah ;
Jimenez, Juan C. ;
Aggarwal, Chaitanya ;
Federle, Michael J. .
PLOS PATHOGENS, 2011, 7 (08)
[9]   PROPHAGE INDUCTION BY DNA TOPOISOMERASE-II POISONS AND REACTIVE-OXYGEN SPECIES - ROLE OF DNA BREAKS [J].
DEMARINI, DM ;
LAWRENCE, BK .
MUTATION RESEARCH, 1992, 267 (01) :1-17
[10]   Immune Responses to the Microbiota at the Intestinal Mucosal Surface [J].
Duerkop, Breck A. ;
Vaishnava, Shipra ;
Hooper, Lora V. .
IMMUNITY, 2009, 31 (03) :368-376