Quantum machine learning using atom-in-molecule-based fragments selected on the fly

被引:141
作者
Huang, Bing [1 ,2 ]
von Lilienfeld, O. Anatole [1 ,2 ]
机构
[1] Univ Basel, Dept Chem, Inst Phys Chem, Basel, Switzerland
[2] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat MA, Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; NEARSIGHTEDNESS;
D O I
10.1038/s41557-020-0527-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
First-principles-based exploration of chemical space deepens our understanding of chemistry and might help with the design of new molecules, materials or experiments. Due to the computational cost of quantum chemistry methods and the immense number of theoretically possible stable compounds, comprehensive in silico screening remains prohibitive. To overcome this challenge, we combine atom-in-molecule-based fragments, dubbed 'amons' (A), with active learning in transferable quantum machine learning (ML) models. The efficiency, accuracy, scalability and transferability of the resulting AML models is demonstrated for important molecular quantum properties such as energies, forces, atomic charges, NMR shifts and polarizabilities and for systems including organic molecules, 2D materials, water clusters, Watson-Crick DNA base pairs and even ubiquitin. Conceptually, the AML approach extends Mendeleev's table to account effectively for chemical environments, which allows the systematic reconstruction of many chemistries from local building blocks.Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt.
引用
收藏
页码:945 / +
页数:11
相关论文
共 58 条
[31]   Consistent van der Waals Radii for the Whole Main Group [J].
Mantina, Manjeera ;
Chamberlin, Adam C. ;
Valero, Rosendo ;
Cramer, Christopher J. ;
Truhlar, Donald G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (19) :5806-5812
[32]   A Theoretical Study of Single-Atom Catalysis of CO Oxidation Using Au Embedded 2D h-BN Monolayer: A CO-Promoted O2 Activation [J].
Mao, Keke ;
Li, Lei ;
Zhang, Wenhua ;
Pei, Yong ;
Zeng, Xiao Cheng ;
Wu, Xiaojun ;
Yang, Jinlong .
SCIENTIFIC REPORTS, 2014, 4
[33]  
MARTIN R. M., 2004, Errlectronic Structure: Basic Theory and Practical Methods
[34]  
Medvedev MG, 2017, SCIENCE, V355, P49, DOI [10.1126/science.aah5975, 10.1126/science.aam9550]
[35]   Combinatorial screening for new materials in unconstrained composition space with machine learning [J].
Meredig, B. ;
Agrawal, A. ;
Kirklin, S. ;
Saal, J. E. ;
Doak, J. W. ;
Thompson, A. ;
Zhang, K. ;
Choudhary, A. ;
Wolverton, C. .
PHYSICAL REVIEW B, 2014, 89 (09)
[36]  
Muto Y., 1943, Proc. Phys. Math. Soc. Jpn, V17, P629, DOI DOI 10.11429/SUBUTSUKAISHI1927.17.10-11-12_629
[37]   Software update: the ORCA program system, version 4.0 [J].
Neese, Frank .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (01)
[38]   Open Babel: An open chemical toolbox [J].
O'Boyle, Noel M. ;
Banck, Michael ;
James, Craig A. ;
Morley, Chris ;
Vandermeersch, Tim ;
Hutchison, Geoffrey R. .
JOURNAL OF CHEMINFORMATICS, 2011, 3
[39]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[40]   Accelerating materials property predictions using machine learning [J].
Pilania, Ghanshyam ;
Wang, Chenchen ;
Jiang, Xun ;
Rajasekaran, Sanguthevar ;
Ramprasad, Ramamurthy .
SCIENTIFIC REPORTS, 2013, 3