Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase

被引:237
作者
Ebbs, ML [1 ]
Bender, J [1 ]
机构
[1] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Biochem & Mol Biol, Baltimore, MD 21205 USA
关键词
D O I
10.1105/tpc.106.041400
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Arabidopsis thaliana, heterochromatin formation is guided by double-stranded RNA ( dsRNA), which triggers methylation of histone H3 at Lys-9 (H3 mK9) and CG plus non-CG methylation on identical DNA sequences. At heterochromatin targets including transposons and centromere repeats, H3 mK9 mediated by the Su(var)3-9 homologue 4 (SUVH4)/KYP histone methyltransferase ( MTase) is required for the maintenance of non-CG methylation by the CMT3 DNA MTase. Here, we show that although SUVH4 is the major H3 K9 MTase, the SUVH5 protein also has histone MTase activity in vitro and contributes to the maintenance of H3 mK9 and CMT3-mediated non-CG methylation in vivo. Strikingly, the relative contributions of SUVH4, SUVH5, and a third related histone MTase, SUVH6, to non-CG methylation are locus-specific. For example, SUVH4 and SUVH5 together control transposon sequences with only a minor contribution from SUVH6, whereas SUVH4 and SUVH6 together control a transcribed inverted repeat source of dsRNA with only a minor contribution from SUVH5. This locus-specific variation suggests different mechanisms for recruiting or activating SUVH enzymes at different heterochromatic sequences. The suvh4 suvh5 suvh6 triple mutant loses both monomethyl and dimethyl H3 K9 at target loci. The suvh4 suvh5 suvh6 mutant also displays a loss of non-CG methylation similar to a cmt3 mutant, indicating that SUVH4, SUVH5, and SUVH6 together control CMT3 activity.
引用
收藏
页码:1166 / 1176
页数:11
相关论文
共 51 条
  • [1] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [2] Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene
    Bartee, L
    Malagnac, F
    Bender, J
    [J]. GENES & DEVELOPMENT, 2001, 15 (14) : 1753 - 1758
  • [3] Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family
    Bartee, L
    Bender, J
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (10) : 2127 - 2134
  • [4] The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes
    Baumbusch, LO
    Thorstensen, T
    Krauss, V
    Fischer, A
    Naumann, K
    Assalkhou, R
    Schulz, I
    Reuter, G
    Aalen, RB
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (21) : 4319 - 4333
  • [5] Identification of proliferation-induced genes in Arabidopsis thaliana -: Characterization of a new member of the highly evolutionarily conserved histone H2A.F/Z variant subfamily
    Callard, D
    Mazzolini, L
    [J]. PLANT PHYSIOLOGY, 1997, 115 (04) : 1385 - 1395
  • [6] Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes
    Cao, XF
    Jacobsen, SE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 : 16491 - 16498
  • [7] Role of the DRM and CMT3 Methyltransferases in RNA-directed DNA methylation
    Cao, XF
    Aufsatz, W
    Zilberman, D
    Mette, MF
    Huang, MS
    Matzke, M
    Jacobsen, SE
    [J]. CURRENT BIOLOGY, 2003, 13 (24) : 2212 - 2217
  • [8] Genomic instability in mice lacking histone H2AX
    Celeste, A
    Petersen, S
    Romanienko, PJ
    Fernandez-Capetillo, O
    Chen, HT
    Sedelnikova, OA
    Reina-San-Martin, B
    Coppola, V
    Meffre, E
    Difilippantonio, MJ
    Redon, C
    Pilch, DR
    Olaru, A
    Eckhaus, M
    Camerini-Otero, RD
    Tessarollo, L
    Livak, F
    Manova, K
    Bonner, WM
    Nussenzweig, MC
    Nussenzweig, A
    [J]. SCIENCE, 2002, 296 (5569) : 922 - 927
  • [9] In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases
    Collins, RE
    Tachibana, M
    Tamaru, H
    Smith, KM
    Jia, D
    Zhang, X
    Selker, EU
    Shinkai, Y
    Cheng, XD
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (07) : 5563 - 5570
  • [10] H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases
    Ebbs, ML
    Bartee, L
    Bender, J
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (23) : 10507 - 10515