Absolute flux optimising curves of flows on a surface

被引:8
作者
Balasuriya, Sanjeeva [1 ,2 ]
Froyland, Gary [3 ]
Santitissadeekorn, Naratip [4 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Connecticut Coll, Dept Math, New London, CT 06320 USA
[3] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Minimum flux curves; Absolute flux; Weighted flux; ALMOST-INVARIANT SETS; TRANSPORT;
D O I
10.1016/j.jmaa.2013.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a flow on a surface, we consider the problem of connecting two distinct trajectories by a curve of extremal (absolute) instantaneous flux. We develop a complete classification of flux optimal curves, accounting for the possibility of the flux having spatially and temporally varying weight. This weight enables modelling the flux of non-equilibrium distributions of tracer particles, pollution concentrations, or active scalar fields such as vorticity. Our results are applicable to all smooth autonomous flows, area preserving or not. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 139
页数:21
相关论文
共 42 条
[1]  
ACHESON DJ, 1990, ELEMENTARY FLUID MEC
[2]  
[Anonymous], 1994, APPL MATH SCI
[3]  
ARNOLD V, 1965, CR HEBD ACAD SCI, V261, P17
[5]  
Arnold VI, 1998, ORDINARY DIFFERENTIA
[6]   Approach for maximizing chaotic mixing in microfluidic devices [J].
Balasuriya, S .
PHYSICS OF FLUIDS, 2005, 17 (11) :1-4
[7]   Optimal perturbation for enhanced chaotic transport [J].
Balasuriya, S .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (3-4) :155-176
[8]   Energy Constrained Transport Maximization across a Fluid Interface [J].
Balasuriya, Sanjeeva ;
Finn, Matthew D. .
PHYSICAL REVIEW LETTERS, 2012, 108 (24)
[9]   Optimal Frequency for Microfluidic Mixing across a Fluid Interface [J].
Balasuriya, Sanjeeva .
PHYSICAL REVIEW LETTERS, 2010, 105 (06)
[10]   Geometry of the ergodic quotient reveals coherent structures in flows [J].
Budisic, Marko ;
Mezic, Igor .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (15) :1255-1269