Analytic combinatorics of non-crossing configurations

被引:104
作者
Flajolet, P
Noy, M
机构
[1] Inst Natl Rech Informat & Automat, Algorithms Project, F-78153 Le Chesnay, France
[2] Univ Politecn Catalunya, Dept Appl Math, Barcelona 08028, Spain
关键词
D O I
10.1016/S0012-365X(98)00372-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes a systematic approach to the enumeration of 'non-crossing' geometric configurations built an vertices of a convex n-gon in the plane. It relies on generating functions, symbolic methods, singularity analysis, and singularity perturbation. Consequences are both exact and asymptotic counting results for trees, forests, graphs, connected graphs, dissections, and partitions. Limit laws of the Gaussian type are also established in this framework; they concern a variety of parameters like number of leaves in trees, number of components or edges in graphs, etc. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:203 / 229
页数:27
相关论文
共 40 条
[1]  
Abhyankar SS., 1990, Algebraic geometry for scientists and engineers, DOI DOI 10.1090/SURV/035
[2]  
[Anonymous], MATH ASS AM STUDIES
[3]  
[Anonymous], ADV COMBINATORICS
[4]  
[Anonymous], 1974, DISCRETE MATH
[5]  
[Anonymous], 1973, J COMB THEORY A
[6]  
[Anonymous], 1983, COMBINATORIAL ENUMER
[7]   CENTRAL AND LOCAL LIMIT-THEOREMS APPLIED TO ASYMPTOTIC ENUMERATION .2. MULTIVARIATE GENERATING-FUNCTIONS [J].
BENDER, EA ;
RICHMOND, LB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (03) :255-265
[8]  
BERGERON F, 1994, PUBLICATIONS LACIM, V19
[9]   Catalan, Motzkin, and Riordan numbers [J].
Bernhart, FR .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :73-112
[10]  
CANFIELD ER, 1984, J COMB THEORY A, V37, P348