Injectivity sets for the radon transform over circles and complete systems of radial functions

被引:102
作者
Agranovsky, ML [1 ]
Quinto, ET [1 ]
机构
[1] TUFTS UNIV,DEPT MATH,MEDFORD,MA 02155
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.1996.0090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A necessary and sufficient characterization is given that specifies which sets of sums of translations of radial functions are dense in the set of continuous unctions in the plane, This problem is shown to be equivalent to inversion for the Radon transform on circles centered on restricted subsets of the plane. The proofs rest on the geometry of zero sets for harmonic polynomials and the microlocal analysis of this circular Radon transform. A characterization of nodal sets for the heat and wave equation in the plane are consequences of our theorems, and questions of Pinkus and Ehrenpreis are answered. (C) 1996 Academic Press, Inc.
引用
收藏
页码:383 / 414
页数:32
相关论文
共 38 条
[1]  
Agranovsky M., 1994, J ANAL MATH, V63, P131, DOI [DOI 10.1007/BF03008422, 1269218]
[2]  
AGRANOVSKY M, 1994, INT MATH RES NOTICES, V11, P467
[3]  
Agranovsky ML., 1978, SOVIET MATH DOKL, V19, P1522
[4]  
[Anonymous], ANAL LINEAR PARTIAL
[5]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[6]   A LOCAL VERSION OF THE 2-CIRCLES THEOREM [J].
BERENSTEIN, CA ;
GAY, R .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (03) :267-288
[7]   POMPEIUS PROBLEM ON SPACES OF CONSTANT CURVATURE [J].
BERENSTEIN, CA ;
ZALCMAN, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :113-130
[8]   POMPEIU PROBLEM ON SYMMETRIC-SPACES [J].
BERENSTEIN, CA ;
ZALCMAN, L .
COMMENTARII MATHEMATICI HELVETICI, 1980, 55 (04) :593-621
[9]   SUPPORT THEOREMS FOR REAL-ANALYTIC RADON TRANSFORMS [J].
BOMAN, J ;
QUINTO, ET .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :943-948
[10]  
COURANT R, 1962, METHODS MATH PHYSICS, V2