Saccharomyces cerevisiae Ccr4-Not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway

被引:65
作者
Lenssen, E
Oberholzer, U
Labarre, J
De Virgilio, C
Collart, MA
机构
[1] CMU, Dept Biochim Med, CH-1211 Geneva 4, Switzerland
[2] CEA Saclay, Paris, France
关键词
D O I
10.1046/j.1365-2958.2002.02799.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Ccr4-Not complex is a global regulator of transcription that affects genes positively and negatively and is thought to modulate the activity of TFIID. In the present work, we provide evidence that the Ccr4-Not complex may contribute to transcriptional regulation by the Ras/cAMP pathway. Several observations support this model. First, Msn2/4p-dependent transcription, which is known to be under negative control of cAMP-dependent protein kinase (PKA), is derepressed in all ccr4-not mutants. This phenotype is paralleled by specific post-translational modification defects of Msn2p in ccr4-not mutants relative to wild-type cells. Secondly, mutations in various NOT genes result in a synthetic temperature-sensitive growth defect when combined with mutations that compromise cells for PKA activity and at least partially suppress the effects of both a dominant-active RAS2(Val-19) allele and loss of Rim-15p. Thirdly, Not3p and Not5p, which are modified and subsequently degraded by stress signals that also lead to increased Msn2/4p-dependent activity, show a specific two-hybrid interaction with Tpk2p. Together, our results suggest that the Ccr4-Not complex may function as an effector of the Ras/cAMP pathway that contributes to repress basal, stress- and starvation-induced transcription by Msn2/4p.
引用
收藏
页码:1023 / 1037
页数:15
相关论文
共 51 条
[1]  
Badarinarayana V, 2000, GENETICS, V155, P1045
[2]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692
[3]   Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes [J].
Benson, JD ;
Benson, M ;
Howley, PM ;
Struhl, K .
EMBO JOURNAL, 1998, 17 (22) :6714-6722
[4]   The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons [J].
Boy-Marcotte, E ;
Lagniel, G ;
Perrot, M ;
Bussereau, F ;
Boudsocq, A ;
Jacquet, M ;
Labarre, J .
MOLECULAR MICROBIOLOGY, 1999, 33 (02) :274-283
[5]   Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae [J].
Boy-Marcotte, E ;
Perrot, M ;
Bussereau, F ;
Boucherie, H ;
Jacquet, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1044-1052
[6]   RAS GENES IN SACCHAROMYCES-CEREVISIAE - SIGNAL TRANSDUCTION IN SEARCH OF A PATHWAY [J].
BROACH, JR .
TRENDS IN GENETICS, 1991, 7 (01) :28-33
[7]   THE SACCHAROMYCES-CEREVISIAE CDC25 GENE-PRODUCT REGULATES THE RAS/ADENYLATE CYCLASE PATHWAY [J].
BROEK, D ;
TODA, T ;
MICHAELI, T ;
LEVIN, L ;
BIRCHMEIER, C ;
ZOLLER, M ;
POWERS, S ;
WIGLER, M .
CELL, 1987, 48 (05) :789-799
[8]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[9]  
Chang MP, 1999, MOL CELL BIOL, V19, P1056
[10]  
Chang YW, 2001, GENETICS, V157, P17