The shoots of the South African legume Aspalathus linearis spp. linearis (A. linear is) are used in the manufacture of an increasingly popular beverage that has acclaimed beneficial effects on health; this important export product is known as Rooibos (or Redbush) tea. Three strains of Bradyrhizobium? aspalati, which are the nitrogen-fixing symbionts of Aspalathus carnosa, A. hispida and A. linearis, were tested for the production of lipo-chitin oligosaccharide signal molecules using thin-layer chromatographic analysis after induction with different inducers, including Rooibos tea extract, and radioactive labelling. Large-scale separation, using high-performance liquid chromatography, of lipo-chitin oligosaccharides from B. aspalati isolated from A. carnosa was performed for structural characterisation using fast-atom bombardment mass spectrometry and chemical modifications followed by gas chromatography-mass spectrometric analysis. The strain was shown to secrete a family of unusual lipo-chitin oligosaccharides that are highly substituted on the nonreducing-terminal residue but unsubstituted on the reducing-terminal residue. They have a backbone of three to five beta-(1 --> 4)-linked N-acetyl-D-glucosamine residues substituted on the nonreducing terminus with a C16:0, C16:1, C18:0, C18:1, C19:1cy, or C20:1 fatty acyl chain, and are both N-methylated and 4,6-dicarbamoylated. (C) 1999 Elsevier Science Ltd. All rights reserved.