Recently mobilized Transposons in the human and chimpanzee Genomes

被引:109
作者
Mills, RE
Bennett, EA
Iskow, RC
Luttig, CT
Tsui, C
Pittard, WS
Devine, SE
机构
[1] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Emory Ctr Bioinformat, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Grad Program Genet & Mol Biol, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, BimCore, Atlanta, GA 30322 USA
关键词
D O I
10.1086/501028
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transposable genetic elements are abundant in the genomes of most organisms, including humans. These endogenous mutagens can alter genes, promote genomic rearrangements, and may help to drive the speciation of organisms. In this study, we identified almost 11,000 transposon copies that are differentially present in the human and chimpanzee genomes. Most of these transposon copies were mobilized after the existence of a common ancestor of humans and chimpanzees, similar to 6 million years ago. Alu, L1, and SVA insertions accounted for > 95% of the insertions in both species. Our data indicate that humans have supported higher levels of transposition than have chimpanzees during the past several million years and have amplified different transposon subfamilies. In both species, similar to 34% of the insertions were located within known genes. These insertions represent a form of species-specific genetic variation that may have contributed to the differential evolution of humans and chimpanzees. In addition to providing an initial overview of recently mobilized elements, our collections will be useful for assessing the impact of these insertions on their hosts and for studying the transposition mechanisms of these elements.
引用
收藏
页码:671 / 679
页数:9
相关论文
共 28 条
[1]   Alu repeats and human genomic diversity [J].
Batzer, MA ;
Deininger, PL .
NATURE REVIEWS GENETICS, 2002, 3 (05) :370-379
[2]   Natural genetic variation caused by transposable elements in humans [J].
Bennettt, EA ;
Coleman, LE ;
Tsui, C ;
Pittard, WS ;
Devine, SE .
GENETICS, 2004, 168 (02) :933-951
[3]   L1 (LINE-1) retrotransposon evolution and amplification in recent human history [J].
Boissinot, S ;
Chevret, P ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (06) :915-928
[4]   Selection against deleterious LINE-1-containing loci in the human lineage [J].
Boissinot, S ;
Entezam, A ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (06) :926-935
[5]   Hot L1s account for the bulk of retrotransposition in the human population [J].
Brouha, B ;
Schustak, J ;
Badge, RM ;
Lutz-Prigget, S ;
Farley, AH ;
Moran, JV ;
Kazazian, HH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5280-5285
[6]  
*CHIMP SEQ AN CONS, 2005, NATURE
[7]   LINE-mediated retrotransposition of marked Alu sequences [J].
Dewannieux, M ;
Esnault, C ;
Heidmann, T .
NATURE GENETICS, 2003, 35 (01) :41-48
[8]   Human LINE retrotransposons generate processed pseudogenes [J].
Esnault, C ;
Maestre, J ;
Heidmann, T .
NATURE GENETICS, 2000, 24 (04) :363-367
[9]   Base-calling of automated sequencer traces using phred.: I.: Accuracy assessment [J].
Ewing, B ;
Hillier, L ;
Wendl, MC ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :175-185
[10]   Differential Alu mobilization and polymorphism among the human and chimpanzee lineages [J].
Hedges, DJ ;
Callinan, PA ;
Cordaux, R ;
Xing, J ;
Barnes, E ;
Batzer, MA .
GENOME RESEARCH, 2004, 14 (06) :1068-1075