Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity

被引:668
作者
Sathishkumar, M. [1 ]
Sneha, K. [1 ]
Won, S. W. [1 ]
Cho, C. -W. [1 ]
Kim, S. [1 ]
Yun, Y. -S. [1 ]
机构
[1] Chonbuk Natl Univ, Environm Biotechnol Natl Res Lab, Sch Chem Engn, Res Inst Ind Technol, Jeonju 561756, South Korea
关键词
Silver; Nanoparticles; Cinnamon zeylanicum; Reduction; Antimicrobial activity; ANTIMICROBIAL ACTIVITY; NANOPARTICLES; BIOSYNTHESIS; COPPER; FUNGUS;
D O I
10.1016/j.colsurfb.2009.06.005
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The present study reports the synthesis of silver (Ag) nanoparticles from silver precursor using the bark extract and powder of novel Cinnamon zeylanicum. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles. TEM and XRD results confirmed the presence of nano-crystalline Ag particles. The pH played a major role in size control of the particles. Bark extract produced more Ag nanoparticles than the powder did. which was attributed to the large availability of the reducing agents in the extract. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The EC50 value of the synthesized nanoparticles against Escherichia coli BL-21 strain was 11 +/- 1.72 mg/L Thus C. zeylanicum bark extract and powder are a good bio-resource/biomaterial for the synthesis of Ag nanoparticles with antimicrobial activity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 338
页数:7
相关论文
共 30 条
[1]   Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Mandal, D ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (41) :12108-12109
[2]   A simple route for manufacturing highly dispersed silver nanoparticles [J].
Andreescu, Daniel ;
Eastman, Christopher ;
Balantrapti, Krishna ;
Goia, Dan V. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (09) :2488-2496
[3]   Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum [J].
Basavaraja, S. ;
Balaji, S. D. ;
Lagashetty, Arunkumar ;
Rajasab, A. H. ;
Venkataraman, A. .
MATERIALS RESEARCH BULLETIN, 2008, 43 (05) :1164-1170
[4]   The study of antimicrobial activity and preservative effects of nanosilver ingredient [J].
Cho, KH ;
Park, JE ;
Osaka, T ;
Park, SG .
ELECTROCHIMICA ACTA, 2005, 51 (05) :956-960
[5]   Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles [J].
Gardea-Torresdey, JL ;
Gomez, E ;
Peralta-Videa, JR ;
Parsons, JG ;
Troiani, H ;
Jose-Yacaman, M .
LANGMUIR, 2003, 19 (04) :1357-1361
[6]   Formation and growth of Au nanoparticles inside live alfalfa plants [J].
Gardea-Torresdey, JL ;
Parsons, JG ;
Gomez, E ;
Peralta-Videa, J ;
Troiani, HE ;
Santiago, P ;
Yacaman, MJ .
NANO LETTERS, 2002, 2 (04) :397-401
[7]   Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity [J].
Gole, A ;
Dash, C ;
Ramakrishnan, V ;
Sainkar, SR ;
Mandale, AB ;
Rao, M ;
Sastry, M .
LANGMUIR, 2001, 17 (05) :1674-1679
[8]   Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf [J].
Huang, Jiale ;
Li, Qingbiao ;
Sun, Daohua ;
Lu, Yinghua ;
Su, Yuanbo ;
Yang, Xin ;
Wang, Huixuan ;
Wang, Yuanpeng ;
Shao, Wenyao ;
He, Ning ;
Hong, Jinqing ;
Chen, Cuixue .
NANOTECHNOLOGY, 2007, 18 (10)
[9]  
Jayaprakasha GK, 2002, Z NATURFORSCH C, V57, P990
[10]   Biosynthesis of silver nanocrystals by Bacillus licheniformis [J].
Kalimuthu, Kalishwaralal ;
Babu, Ramkumarpandian Suresh ;
Venkataraman, Deepak ;
Bilal, Mohd. ;
Gurunathan, Sangiliyandi .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2008, 65 (01) :150-153