Functional studies of individual myosin molecules

被引:11
作者
Dantzig, Jody A. [1 ]
Liu, Tim Y. [1 ]
Goldman, Yale E. [1 ]
机构
[1] Univ Penn, Sch Med, Penn Muscle Inst, Philadelphia, PA 19104 USA
来源
INTERACTIVE AND INTEGRATIVE CARDIOLOGY | 2006年 / 1080卷
关键词
myosin; molecular motors; laser tweezers; optical trap; TIRF microscopy; single molecule; cardiac;
D O I
10.1196/annals.1380.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The "conventional" isoform of myosin that polymerizes into filaments (myosin II) is the molecular motor powering contraction in all three types of muscle. Considerable attention has been paid to the developmental progression, isoform distribution, and mutations that affect myocardial development, function, and adaptation. Optical trap (laser tweezer) experiments and various types of high-resolution fluorescence microscopy, capable of interrogating individual protein motors, are revealing novel and detailed information about their functionally relevant nanometer motions and pico-Newton forces. Single-molecule laser tweezer studies of cardiac myosin isoforms and their mutants have helped to elucidate the pathogenesis of familial hypertrophic cardiomyopathies. Surprisingly, some disease mutations seem to enhance myosin function. More broadly, the myosin superfamily includes more than 20 nonfilamentous members with myriad cellular functions, including targeted organelle transport, endocytosis, chemotaxis, cytokinesis, modulation of sensory systems, and signal transduction. Widely varying genetic, developmental and functional disorders of the nervous, pigmentation, and immune systems have been described in accordance with these many roles. Compared to the collective nature of myosin 11, some myosin family members operate with only a few partners or even alone. Individual myosin V and VI molecules can carry cellular vesicular cargos much farther distances than their own size. Laser tweezer mechanics, single-molecule fluorescence polarization, and imaging with nanometer precision have elucidated the very different mechano-chemical properties of these isoforms. Critical contributions of nonsarcomeric myosins to myocardial development and adaptation are likely to be discovered in future studies, so these techniques and concepts may become important in cardiovascular research.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 83 条
[1]   Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart [J].
Abel, ED ;
Kaulbach, HC ;
Tian, R ;
Hopkins, JCA ;
Duffy, J ;
Doetschman, T ;
Minnemann, T ;
Boers, ME ;
Hadro, E ;
Oberste-Berghaus, C ;
Quist, W ;
Lowell, BB ;
Ingwall, JS ;
Kahn, BB .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (12) :1703-1714
[2]   The genetic basis for cardiac remodeling [J].
Ahmad, F ;
Seidman, JG ;
Seidman, CE .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2005, 6 :185-216
[3]   Molecular and phenotypic effects of heterozygous, homozygous, and compound heterozygote myosin heavy-chain mutations [J].
Alpert, NR ;
Mohiddin, SA ;
Tripodi, D ;
Jacobson-Hatzell, J ;
Vaughn-Whitley, K ;
Brosseau, C ;
Warshaw, DM ;
Fananapazir, L .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2005, 288 (03) :H1097-H1102
[4]   The mechanism of myosin VI translocation an its load-induced anchoring [J].
Altman, D ;
Sweeney, HL ;
Spudich, JA .
CELL, 2004, 116 (05) :737-749
[5]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[6]   Characterization of unconventional MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice [J].
Avraham, KB ;
Hasson, T ;
Sobe, T ;
Balsara, B ;
Testa, JR ;
Skvorak, AB ;
Morton, CC ;
Copeland, NG ;
Jenkins, NA .
HUMAN MOLECULAR GENETICS, 1997, 6 (08) :1225-1231
[7]  
Barbara PF, 2005, ACCOUNTS CHEM RES, V38, P503, DOI 10.1021/ar050120h
[8]   TEDS RULE - A MOLECULAR RATIONALE FOR DIFFERENTIAL REGULATION OF MYOSINS BY PHOSPHORYLATION OF THE HEAVY-CHAIN HEAD [J].
BEMENT, WM ;
MOOSEKER, MS .
CELL MOTILITY AND THE CYTOSKELETON, 1995, 31 (02) :87-92
[9]   A millennial myosin census [J].
Berg, JS ;
Powell, BC ;
Cheney, RE .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (04) :780-794
[10]   Altered crossbridge kinetics in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy [J].
Blanchard, E ;
Seidman, C ;
Seidman, JG ;
LeWinter, M ;
Maughan, D .
CIRCULATION RESEARCH, 1999, 84 (04) :475-483