Quantum probability from decision theory?

被引:49
作者
Barnum, H [1 ]
Caves, CM
Finkelstein, J
Fuchs, CA
Schack, R
机构
[1] Hampshire Coll, Sch Nat Sci, Amherst, MA 01002 USA
[2] Hampshire Coll, Inst Sci & Interdisciplinary Studies, Amherst, MA 01002 USA
[3] Univ New Mexico, Dept Phys & Astron, Ctr Adv Studies, Albuquerque, NM 87131 USA
[4] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA
[5] CALTECH, Norman Bridge Lab Phys, Pasadena, CA 91125 USA
[6] Univ London Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2000年 / 456卷 / 1997期
基金
美国国家科学基金会;
关键词
quantum theory; probability; decision theory; Gleason's theorem;
D O I
10.1098/rspa.2000.0557
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a recent paper, Deutsch claims to derive the 'probabilistic predictions of quantum theory' from the 'non-probabilistic axioms of quantum theory' and the 'non-probabilistic part of classical decision theory.' We show that his derivation includes a. crucial hidden assumption that vitiates the force of his argument. Furthermore, we point out that in classical decision theory a standard set of non-probabilistic axioms is already sufficient to endow possible outcomes with a natural probability structure. Within that context we argue that Gleason's theorem, relying on fewer assumptions than Deutsch, provides a compelling derivation of the quantum probability law.
引用
收藏
页码:1175 / 1182
页数:8
相关论文
共 13 条
[1]  
Bernardo J.M., 2009, Bayesian Theory, V405
[2]  
CAVES CM, 2000, UNPUB BAYESIAN PROBA
[3]   AN ELEMENTARY PROOF OF GLEASON THEOREM [J].
COOKE, R ;
KEANE, M ;
MORAN, W .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (JUL) :117-128
[4]   PROBABILITY, FREQUENCY AND REASONABLE EXPECTATION [J].
COX, RT .
AMERICAN JOURNAL OF PHYSICS, 1946, 14 (01) :1-13
[5]  
DEFINETTI B, 1972, THEORY PROBABILITY, V2
[6]  
DEFINETTI B, 1972, THEORY PROBABILITY, V1
[7]   Quantum theory of probability and decisions [J].
Deutsch, D .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1988) :3129-3137
[8]   RELATIVE STATE FORMULATION OF QUANTUM MECHANICS [J].
EVERETT, H .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :454-462
[9]  
GLEASON AM, 1957, J MATH MECH, V6, P885
[10]   AGAINST MANY-WORLDS INTERPRETATIONS [J].
KENT, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (09) :1745-1762