Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis

被引:85
作者
Gomez, I. [1 ]
Pardo-Lopez, L. [1 ]
Munoz-Garay, C. [1 ]
Fernandez, L. E. [1 ]
Perez, C. [1 ]
Sanchez, J. [1 ]
Soberon, M. [1 ]
Bravo, A. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Biotecnol, Cuernavaca 62250, Morelos, Mexico
关键词
Cry toxins; Cyt toxins; Bacillus thuringiensis; receptor; binding epitopes; mode of action;
D O I
10.1016/j.peptides.2006.06.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cry toxins from Bacillus thuringiensis are used for insect control. Their primary action is to lyse midgut epithelial cells. In this review we will summarize recent findings on the Cry toxin-receptor interaction and the role of receptor recognition in their mode of action. Cry toxins interact sequentially with multiple receptors. In lepidopteran insects, Cry1A monomeric toxins interact with the first receptor and this interaction triggers oligomerization of the toxins. The oligomer then interacts with second receptor inducing insertion into membrane microdomains and larval death. in the case of mosquitocidal toxins, Cry and Cyt toxins play a part. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin resistance. Recently, it was proposed that Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a membrane-bound receptor for Cry toxin. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:169 / 173
页数:5
相关论文
共 39 条
[1]   Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin [J].
Atsumi, S ;
Mizuno, E ;
Hara, H ;
Nakanishi, K ;
Kitami, M ;
Miura, N ;
Tabunoki, H ;
Watanabe, A ;
Sato, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (07) :3966-3977
[2]  
Becker N., 2000, ENTOMOPATHOGENIC BAC, P383, DOI DOI 10.1007/978-94-017-1429-7_21
[3]   Crystal structure of the mosquito-iarvicidal toxin Cry4Ba and its biological implications [J].
Boonserm, P ;
Davis, P ;
Ellar, DJ ;
Li, J .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 348 (02) :363-382
[4]  
Bravo A., 2005, COMPREHENSIVE MOL IN, P175, DOI [10.1016/B0-44-451924-6/00081-8, DOI 10.1016/B0-44-451924-6/00081-8]
[5]  
BRAVO A, 2004, BIOCHIM BIOPHYS ACTA, V166, P38
[6]   N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin [J].
Burton, SL ;
Ellar, DJ ;
Li, J ;
Derbyshire, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 287 (05) :1011-1022
[7]   Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes [J].
Butko, P ;
Huang, F ;
PusztaiCarey, M ;
Surewicz, WK .
BIOCHEMISTRY, 1997, 36 (42) :12862-12868
[8]   Interaction of 65- and 62-kD proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11A endotoxins of Bacillus thuringiensis [J].
Buzdin, AA ;
Revina, LP ;
Kostina, LI ;
Zalunin, IA ;
Chestukhina, GG .
BIOCHEMISTRY-MOSCOW, 2002, 67 (05) :540-546
[9]   Optimal control of helicopter seat cushions for the reduction of spinal injuries [J].
Cheng, ZQ ;
Pilkey, WD ;
Balandin, DV ;
Bolotnik, NN ;
Crandall, JR ;
Shaw, CG .
INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2001, 6 (03) :321-338
[10]   Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N [J].
de Maagd, RA ;
Bakker, PL ;
Masson, L ;
Adang, MJ ;
Sangadala, S ;
Stiekema, W ;
Bosch, D .
MOLECULAR MICROBIOLOGY, 1999, 31 (02) :463-471