Twofold efficiency increase in nanocrystalline-TiO2/polymer photovoltaic devices by interfacial modification with a lithium salt

被引:1
作者
Barkhouse, D. Aaron R. [1 ]
Carey, Michelle J. [1 ]
Xie, Zhibin [1 ]
Kirov, Kiril R. [1 ]
Henry, Bernard M. [1 ]
Assender, Hazel E. [1 ]
Webster, Graham R. [2 ]
Burn, Paul L. [2 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
来源
ORGANIC PHOTOVOLTAICS VII | 2006年 / 6334卷
关键词
TiO2; polymer; MEH-PPV; nanocomposite; lithium; interface; solar cell; photovoltaic;
D O I
10.1117/12.679424
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Modification of the interface of titanium dioxide/poly[2-(2-ethylhexyloxy)-5-methoxy-1,4,-phenylenevinylene] (TiO2/MEH-PPV) nanocomposite photovoltaic devices with a lithium salt, Li[CF3SO2](2)N, is shown to result in a twofold increase in device efficiency. The devices are of the type ITO/TiO2/MEH-PPV/Au. The TiO2 layer is deposited by doctor blading a colloidal anatase paste, and the polymer is then spin-coated on top followed by thermal evaporation of gold contacts. Careful control of manufacturing conditions and use of a 35 nm polymer layer leads to a device efficiency of 0.48% for un-modified devices. The increased efficiency following Li treatment is the result of a 40% increase in both the short-circuit current and fill factor, while the open-circuit voltage remains unchanged. A maximum efficiency of 1.05% has been achieved under 80% sun illumination. This represents a record efficiency for this type of cell. Photoconductivity experiments show a substantial increase in conductivity of the TiO2 layer following Li modification. Interfacial modification is done via a simple soaking procedure, and the effect of varying the concentration of Li[CF3SO2](2)N is discussed. We report investigations into optimization and the mechanism of such improvement, for example by varying processing parameters of the modification procedure or the ionic species themselves.
引用
收藏
页数:10
相关论文
共 15 条
  • [1] Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies
    Bach, U
    Lupo, D
    Comte, P
    Moser, JE
    Weissörtel, F
    Salbeck, J
    Spreitzer, H
    Grätzel, M
    [J]. NATURE, 1998, 395 (6702) : 583 - 585
  • [2] BREEZE AJ, PHYS REV B, V6412, P2001
  • [3] Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania
    Coakley, KM
    McGehee, MD
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (16) : 3380 - 3382
  • [4] Interface engineering for solid-state dye-sensitized nanocrystalline solar cells: The use of ion-solvating hole-transporting polymers
    Haque, SA
    Park, T
    Xu, C
    Koops, S
    Schulte, N
    Potter, RJ
    Holmes, AB
    Durrant, JR
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (05) : 435 - 440
  • [5] Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2
    Kelly, CA
    Farzad, F
    Thompson, DW
    Stipkala, JM
    Meyer, GJ
    [J]. LANGMUIR, 1999, 15 (20) : 7047 - 7054
  • [6] Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells
    Kopidakis, N
    Benkstein, KD
    van de Lagemaat, J
    Frank, AJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (41) : 11307 - 11315
  • [8] Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells:: Influence of lithium ions on the photovoltaic performance of liquid and solid-state cells
    Kuang, DB
    Klein, C
    Snaith, HJ
    Moser, JE
    Humphry-Baker, R
    Comte, P
    Zakeeruddin, SM
    Grätzel, M
    [J]. NANO LETTERS, 2006, 6 (04) : 769 - 773
  • [9] Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole
    Murakoshi, K
    Kogure, R
    Wada, Y
    Yanagida, S
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 55 (1-2) : 113 - 125
  • [10] A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctions
    Park, T
    Haque, SA
    Potter, RJ
    Holmes, AB
    Durrant, JR
    [J]. CHEMICAL COMMUNICATIONS, 2003, (23) : 2878 - 2879