An elementary proof of a theorem of Johnson and Lindenstrauss

被引:574
作者
Dasgupta, S
Gupta, A
机构
[1] Lucent Bell Labs, Murray Hill, NJ 07974 USA
[2] AT&T Labs Res, Florham Pk, NJ 07932 USA
关键词
D O I
10.1002/rsa.10073
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A result of Johnson and Lindenstrauss [13] shows that a set of n points in high dimensional Euclidean space can be mapped into an O(log n/epsilon(2))-dimensional Euclidean space such that the distance between any two points changes by only a factor of (1 +/- epsilon). In this note, we prove this theorem using elementary probabilistic techniques. (C) 2002 Wiley Periodicals. Inc.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 13 条
[1]  
Achlioptas D., 2001, P 20 ACM SIGMOD SIGA, P274, DOI DOI 10.1145/375551.375608
[2]  
ALON N, UNPUB PROBLEMS RES 1
[3]  
[Anonymous], 1984, CONTEMP MATH
[4]  
Arriaga R. I., 1999, P 40 ANN S FDN COMP, P616
[5]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[6]  
Dasgupta S., 1999, P 40 ANN S FDN COMP, P634, DOI DOI 10.1109/SFFCS.1999.814639
[7]  
Engebretsen L, 2002, SIAM PROC S, P705
[8]   THE JOHNSON-LINDENSTRAUSS LEMMA AND THE SPHERICITY OF SOME GRAPHS [J].
FRANKL, P ;
MAEHARA, H .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (03) :355-362
[9]   SOME GEOMETRIC APPLICATIONS OF THE BETA DISTRIBUTION [J].
FRANKL, P ;
MAEHARA, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1990, 42 (03) :463-474