Cloning and expression of the human N-acetylglutamate synthase gene

被引:64
作者
Caldovic, L
Morizono, H
Panglao, MG
Gallegos, R
Yu, XL
Shi, DS
Malamy, MH
Allewell, NM
Tuchman, M
机构
[1] George Washington Univ, Childrens Natl Med Ctr, Childrens Res Inst, Washington, DC 20010 USA
[2] Tufts Univ, Dept Microbiol, Boston, MA 02111 USA
[3] Univ Maryland, Coll Life Sci, College Pk, MD 20742 USA
关键词
urea cycle; carbamylphosphate synthetase 1; arginine metabolism; ArgA; ARG2; NAT7;
D O I
10.1016/S0006-291X(02)02696-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
N-acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme catalyzing the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthase I (CPSI), the first enzyme of the urea cycle. Patients with NAGS deficiency develop hyperammonemia because CPSI is inactive without NAG. The human NAGS cDNA was isolated from a liver library based on its similarity to mouse NAGS. The deduced amino acid sequence contains an N-terminal putative mitochondrial targeting signal of 49 amino acids (63% identity with mouse NAGS) followed by a "variable domain" of 45 amino acids (35% identity) and a "conserved domain" of 440 amino acids (92% identity). A cDNA sequence containing the "conserved domain" complements an NAGS-deficient Escherichia coli strain and the recombinant protein has arginine-responsive NAGS catalytic activity. The NAGS gene is expressed in the liver and small intestine; the intestinal transcript is smaller in size than liver transcript. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:581 / 586
页数:6
相关论文
共 19 条
[1]   Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes [J].
Aparicio, S ;
Chapman, J ;
Stupka, E ;
Putnam, N ;
Chia, J ;
Dehal, P ;
Christoffels, A ;
Rash, S ;
Hoon, S ;
Smit, A ;
Gelpke, MDS ;
Roach, J ;
Oh, T ;
Ho, IY ;
Wong, M ;
Detter, C ;
Verhoef, F ;
Predki, P ;
Tay, A ;
Lucas, S ;
Richardson, P ;
Smith, SF ;
Clark, MS ;
Edwards, YJK ;
Doggett, N ;
Zharkikh, A ;
Tavtigian, SV ;
Pruss, D ;
Barnstead, M ;
Evans, C ;
Baden, H ;
Powell, J ;
Glusman, G ;
Rowen, L ;
Hood, L ;
Tan, YH ;
Elgar, G ;
Hawkins, T ;
Venkatesh, B ;
Rokhsar, D ;
Brenner, S .
SCIENCE, 2002, 297 (5585) :1301-1310
[2]  
BACHMANN C, 1982, ADV EXP MED BIOL, V153, P39
[3]   Identification, cloning and expression of the mouse N-acetylglutamate synthase gene [J].
Caldovic, L ;
Morizono, H ;
Yu, XL ;
Thompson, M ;
Shi, DS ;
Gallegos, R ;
Allewell, NM ;
Malamy, MH ;
Tuchman, M .
BIOCHEMICAL JOURNAL, 2002, 364 :825-831
[4]  
COLOMBO JP, 1994, ADV EXP MED BIOL, V368, P135
[5]   INHIBITION BY PROPIONYL-COENZYME-A OF N-ACETYLGLUTAMATE SYNTHETASE IN RAT-LIVER MITOCHONDRIA - POSSIBLE EXPLANATION FOR HYPER-AMMONEMIA IN PROPIONIC AND METHYLMALONIC ACIDEMIA [J].
COUDE, FX ;
SWEETMAN, L ;
NYHAN, WL .
JOURNAL OF CLINICAL INVESTIGATION, 1979, 64 (06) :1544-1551
[6]  
COUDE FX, 1982, ADV EXP MED BIOL, V153, P39
[7]   LONG-TERM INGESTION OF AMMONIUM INCREASES ACETYLGLUTAMATE AND UREA LEVELS WITHOUT AFFECTING THE AMOUNT OF CARBAMOYL-PHOSPHATE SYNTHASE [J].
FELIPO, V ;
MINANA, MD ;
GRISOLIA, S .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 176 (03) :567-571
[8]  
GRISOLIA S, 1953, J BIOL CHEM, P204
[9]   A NEW NEONATAL CASE OF N-ACETYLGLUTAMATE SYNTHASE DEFICIENCY TREATED BY CARBAMYLGLUTAMATE [J].
GUFFON, N ;
VIANEYSABAN, C ;
BOURGEOIS, J ;
RABIER, D ;
COLOMBO, JP ;
GUIBAUD, P .
JOURNAL OF INHERITED METABOLIC DISEASE, 1995, 18 (01) :61-65
[10]   Mitochondrial processing peptidase: Multiple-site recognition of precursor proteins [J].
Ito, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 265 (03) :611-616