Structure-directed discovery of potent non-peptidic inhibitors of human urokinase that access a novel binding subsite

被引:58
作者
Nienaber, VL [1 ]
Davidson, D
Edalji, R
Giranda, VL
Klinghofer, V
Henkin, J
Magdalinos, P
Mantei, R
Merrick, S
Severin, JM
Smith, RA
Stewart, K
Walter, K
Wang, JY
Wendt, M
Weitzberg, M
Zhao, XM
Rockway, T
机构
[1] Abbott Labs, Dept Biol Struct, Abbott Pk, IL 60064 USA
[2] Abbott Labs, Dept Canc Res, Abbott Pk, IL 60064 USA
关键词
drug design; inhibitors; tumor metastasis; urokinase; X-ray crystallography;
D O I
10.1016/S0969-2126(00)00136-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Human urokinase-type plasminogen activator has been implicated in the regulation and control of basement membrane and interstitial protein degradation. Because of its role in tissue remodeling, urokinase is a central player in the disease progression of cancer, making it an attractive target for design of an anticancer clinical agent. Few urokinase inhibitors have been described, which suggests that discovery of such a compound is in the early stages. Towards integrating structural data into this process, a new human urokinase crystal form amenable to structure-based drug design has been used to discover potent urokinase inhibitors. Results: On the basis of crystallographic data, 2-naphthamidine was chosen as the lead scaffold for structure-directed optimization. This cc-crystal structure shows the compound binding at the primary specificity pocket of the trypsin-like protease and at a novel binding subsite that is accessible from the 8-position of 2-napthamidine. This novel subsite was characterized and used to design two compounds with very different 8-substituents that inhibit urokinase with K-i values of 30-40 nM. Conclusions: Utilization of a novel subsite yielded two potent urokinase inhibitors even though this site has not been widely used in inhibitor optimization with other trypsin-like proteases, such as those reported for thrombin or factor Xa. The extensive binding pockets present at the substrate-binding groove of these other proteins are blocked by unique insertion loops in urokinase, thus necessitating the utilization of additional binding subsites. Successful implementation of this strategy and characterization of the novel site provides a significant step towards the discovery of an anticancer clinical agent.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 58 条
[1]   Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model [J].
Alonso, DF ;
Farias, EF ;
Ladeda, V ;
Davel, L ;
Puricelli, L ;
Joffe, EBD .
BREAST CANCER RESEARCH AND TREATMENT, 1996, 40 (03) :209-223
[2]  
Alonso DF, 1998, ANTICANCER RES, V18, P4499
[3]   Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization [J].
Bajou, K ;
Noël, A ;
Gerard, RD ;
Masson, V ;
Brunner, N ;
Holst-Hansen, C ;
Skobe, M ;
Fusenig, NE ;
Carmeliet, P ;
Collen, D ;
Foidart, JM .
NATURE MEDICINE, 1998, 4 (08) :923-928
[4]   The field bean protease inhibitor has the potential to suppress B16F10 melanoma cell lung metastasis in mice [J].
Banerji, A ;
Fernandes, A ;
Bane, S ;
Ahire, S .
CANCER LETTERS, 1998, 129 (01) :15-20
[5]  
BEHRENDT N, 1990, J BIOL CHEM, V265, P6453
[6]   REFINED CRYSTAL-STRUCTURE OF BOVINE BETA-TRYPSIN AT 1.8 A RESOLUTION .2. CRYSTALLOGRAPHIC REFINEMENT, CALCIUM-BINDING SITE, BENZAMIDINE BINDING-SITE AND ACTIVE-SITE AT PH 7.0 [J].
BODE, W ;
SCHWAGER, P .
JOURNAL OF MOLECULAR BIOLOGY, 1975, 98 (04) :693-717
[7]   THE REFINED 1.9 A CRYSTAL-STRUCTURE OF HUMAN ALPHA-THROMBIN - INTERACTION WITH D-PHE-PRO-ARG CHLOROMETHYLKETONE AND SIGNIFICANCE OF THE TYR-PRO-PRO-TRP INSERTION SEGMENT [J].
BODE, W ;
MAYR, I ;
BAUMANN, U ;
HUBER, R ;
STONE, SR ;
HOFSTEENGE, J .
EMBO JOURNAL, 1989, 8 (11) :3467-3475
[8]   X-ray structure of active site-inhibited clotting factor Xa - Implications for drug design and substrate recognition [J].
Brandstetter, H ;
Kuhne, A ;
Bode, W ;
Huber, R ;
vonderSaal, W ;
Wirthensohn, K ;
Engh, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (47) :29988-29992
[9]  
Bridges A J, 1993, Bioorg Med Chem, V1, P403, DOI 10.1016/S0968-0896(00)82150-1
[10]  
BRUNGER A, 1993, X PLOR VERSION 3 1 M