Bottom-up dependent gating of frontal signals in early visual cortex

被引:261
作者
Ekstrom, Leeland B. [1 ,2 ,3 ]
Roelfsema, Pieter R. [4 ,5 ]
Arsenault, John T. [1 ,6 ]
Bonmassar, Giorgio [1 ]
Vanduffel, Wim [1 ,6 ,7 ]
机构
[1] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[4] Royal Netherlands Acad Arts & Sci, Dept Vis & Cognit, Netherlands Inst Neurosci, NL-1105 BA Amsterdam, Netherlands
[5] Vrije Univ Amsterdam, Dept Expt Neurophysiol, Ctr Neurogenom & cognit Res, NL-1081 HV Amsterdam, Netherlands
[6] Katholieke Univ Leuven, Sch Med, Neuro & Psychofysiol Lab, B-3000 Louvain, Belgium
[7] Harvard Univ, Sch Med, Dept Radiol, Charlestown, MA 02129 USA
关键词
D O I
10.1126/science.1153276
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The frontal eye field (FEF) is one of several cortical regions thought to modulate sensory inputs. Moreover, several hypotheses suggest that the FEF can only modulate early visual areas in the presence of a visual stimulus. To test for bottom-up gating of frontal signals, we microstimulated subregions in the FEF of two monkeys and measured the effects throughout the brain with functional magnetic resonance imaging. The activity of higher-order visual areas was strongly modulated by FEF stimulation, independent of visual stimulation. In contrast, FEF stimulation induced a topographically specific pattern of enhancement and suppression in early visual areas, but only in the presence of a visual stimulus. Modulation strength depended on stimulus contrast and on the presence of distractors. We conclude that bottom-up activation is needed to enable top-down modulation of early visual cortex and that stimulus saliency determines the strength of this modulation.
引用
收藏
页码:414 / 417
页数:4
相关论文
共 29 条
[1]   Changes in visual receptive fields with microstimulation of frontal cortex [J].
Armstrong, Katherine M. ;
Fitzgerald, Jamie K. ;
Moore, Tirin .
NEURON, 2006, 50 (05) :791-798
[2]   Subcortical modulation of attention counters change blindness [J].
Cavanaugh, J ;
Wurtz, RH .
JOURNAL OF NEUROSCIENCE, 2004, 24 (50) :11236-11243
[3]   Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area [J].
Colby, CL ;
Duhamel, JR ;
Goldberg, ME .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (05) :2841-2852
[4]   A common network of functional areas for attention and eye movements [J].
Corbetta, M ;
Akbudak, E ;
Conturo, TE ;
Snyder, AZ ;
Ollinger, JM ;
Drury, HA ;
Linenweber, MR ;
Petersen, SE ;
Raichle, ME ;
Van Essen, DC ;
Shulman, GL .
NEURON, 1998, 21 (04) :761-773
[5]   Control of goal-directed and stimulus-driven attention in the brain [J].
Corbetta, M ;
Shulman, GL .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (03) :201-215
[6]  
FUKUSHIMA K, 1988, IEEE COMPUT, V21, P65
[7]   How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex [J].
Grossberg, S .
SPATIAL VISION, 1999, 12 (02) :163-185
[8]   The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement [J].
Hamker, FH .
CEREBRAL CORTEX, 2005, 15 (04) :431-447
[9]   FRONTAL EYE FIELD AS DEFINED BY INTRACORTICAL MICROSTIMULATION IN SQUIRREL-MONKEYS, OWL MONKEYS, AND MACAQUE MONKEYS .2. CORTICAL CONNECTIONS [J].
HUERTA, MF ;
KRUBITZER, LA ;
KAAS, JH .
JOURNAL OF COMPARATIVE NEUROLOGY, 1987, 265 (03) :332-361
[10]   FRONTAL EYE FIELD AS DEFINED BY INTRACORTICAL MICROSTIMULATION IN SQUIRREL-MONKEYS, OWL MONKEYS, AND MACAQUE MONKEYS .1. SUBCORTICAL CONNECTIONS [J].
HUERTA, MF ;
KRUBITZER, LA ;
KAAS, JH .
JOURNAL OF COMPARATIVE NEUROLOGY, 1986, 253 (04) :415-439