Spinless two-band model in infinite dimensions

被引:5
作者
Craco, L [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevB.59.14837
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A spinless two-band model is studied in infinite-dimension limit. Starting from the atomic limit, the formal exact solution of the model is obtained by means of a perturbative treatment of the hopping and hybridization terms. The model is solved in closed form in high dimensions assuming no local spin fluctuations. The non-Fermi-liquid properties appearing in the metallic phase are analyzed through the behavior of the density of states and the self-energy near the Fermi level.
引用
收藏
页码:14837 / 14840
页数:4
相关论文
共 23 条
[1]   Magnetoresistance in the two-channel Anderson lattice [J].
Anders, FB ;
Jarrell, M ;
Cox, DL .
PHYSICAL REVIEW LETTERS, 1997, 78 (10) :2000-2003
[2]  
BATLOGG B, 1991, LOS ALAMOS S
[3]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[4]   Simplified periodic Anderson model: Exact solution in infinite dimensions [J].
Consiglio, R ;
Gusmao, MA .
PHYSICAL REVIEW B, 1997, 55 (11) :6825-6831
[5]   From the atomic limit to a metal-insulator transition in the Hubbard model [J].
Craco, L ;
Gusmao, MA .
PHYSICAL REVIEW B, 1995, 52 (24) :17135-17142
[6]   Tight-binding treatment of the Hubbard model in infinite dimensions [J].
Craco, L ;
Gusmao, MA .
PHYSICAL REVIEW B, 1996, 54 (03) :1629-1636
[7]   FREQUENCY AND TEMPERATURE-DEPENDENCE OF THE TRANSPORT RELAXATION RATE OF THE KONDO ALLOY U0.2Y0.8PD3 - EVIDENCE FOR NON-FERMI-LIQUID BEHAVIOR [J].
DEGIORGI, L ;
OTT, HR ;
HULLIGER, F .
PHYSICAL REVIEW B, 1995, 52 (01) :42-45
[8]   Kondo insulators [J].
Fisk, Z ;
Sarrao, JL ;
Cooper, SL ;
Nyhus, P ;
Boebinger, GS ;
Passner, A ;
Canfield, PC .
PHYSICA B-CONDENSED MATTER, 1996, 223-24 (1-4) :409-412
[9]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[10]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483