Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells

被引:115
作者
Cho, Da-Young [1 ]
Eun, Kyoungtae [2 ]
Choa, Sung-Hoon [2 ]
Kim, Han-Ki [1 ]
机构
[1] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, Yongin 446701, Gyeonggi Do, South Korea
[2] Seoul Natl Univ Sci & Technol, Grad Sch NID Fus Technol, Seoul 139743, South Korea
关键词
THIN-FILMS; TRANSPARENT; POLYMER; EFFICIENT; OPTOELECTRONICS; FABRICATION; ANODES;
D O I
10.1016/j.carbon.2013.09.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed highly flexible and transparent carbon nanotube (CNT) network electrodes prepared by a simple brush-painting method for the production of cost-effective flexible organic solar cells (FOSCs). By direct, rapid brush-painting of CNTs on a polyethylene terephthalate (PET) substrate using a conventional paintbrush made of nylon fibrils, we achieved percolated CNT network electrodes with a low sheet resistance of 286 Omega/square, a high diffusive transmittance of 78.45%, and superior mechanical flexibility at room temperature. The electrical, optical, and mechanical properties of the brush-painted CNT electrodes were investigated as a function of the number of repeated brush-painting cycles. In particular, brush-painted CNT electrodes showed outstanding flexibility in several test modes, including outer bending, inner bending, twisting and stretching, which are critical requirements in flexible electrodes. Notably, the brush-painted CNT network electrodes had a constant resistance change (Delta R/R-0) within outer and inner bending radii of 5 mm during dynamic fatigue testing. FOSCs fabricated on the brush-painted CNT electrode showed a power conversion efficiency of 1.632%, indicating the possibility of using brush-painted CNT electrodes as cost-effective flexible and transparent electrodes for printing-based low cost FOSCs. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:530 / 538
页数:9
相关论文
共 37 条
[1]   Organic tandem solar cells: A review [J].
Ameri, Tayebeh ;
Dennler, Gilles ;
Lungenschmied, Christoph ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (04) :347-363
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[3]   Polymer solar cells: Recent development and possible routes for improvement in the performance [J].
Cai, Wanzhu ;
Gong, Xiong ;
Cao, Yong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) :114-127
[4]   Mass production of carbon nanotubes using spin-coating of nanoparticles [J].
Choi, GS ;
Cho, YS ;
Son, KH ;
Kim, DJ .
MICROELECTRONIC ENGINEERING, 2003, 66 (1-4) :77-82
[5]   Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells [J].
Choi, Kwang-Hyuk ;
Jeong, Jin-A ;
Kang, Jae-Wook ;
Kim, Do-Guen ;
Kim, Jong Kuk ;
Na, Seok-In ;
Kim, Dong-Yu ;
Kim, Seok-Soon ;
Kim, Han-Ki .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (08) :1248-1255
[6]   Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films [J].
Dan, Budhadipta ;
Irvin, Glen C. ;
Pasquali, Matteo .
ACS NANO, 2009, 3 (04) :835-843
[7]   Transparent, Flexible, and Highly Conductive Thin Films Based on Polymer - Nanotube Composites [J].
De, Sukanta ;
Lyons, Philip E. ;
Sorel, Sophie ;
Doherty, Evelyn M. ;
King, Paul J. ;
Blau, Werner J. ;
Nirmalraj, Peter N. ;
Boland, John J. ;
Scardaci, Vittorio ;
Joimel, Jerome ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (03) :714-720
[8]   Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells [J].
Dupont, Stephanie R. ;
Oliver, Mark ;
Krebs, Frederik C. ;
Dauskardt, Reinhold H. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 97 :171-175
[9]   Optical anisotropy in single-walled carbon nanotube thin films: Implications for transparent and conducting electrodes in organic photovoltaics [J].
Fanchini, Giovanni ;
Miller, Steve ;
Parekh, Lhavin B. ;
Chhowalla, Manish .
NANO LETTERS, 2008, 8 (08) :2176-2179
[10]   NEW FIGURE OF MERIT FOR TRANSPARENT CONDUCTORS [J].
HAACKE, G .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (09) :4086-4089