Stability and drift of underwater vehicle dynamics: Mechanical systems with rigid motion symmetry

被引:80
作者
Leonard, NE [1 ]
Marsden, JE [1 ]
机构
[1] CALTECH, PASADENA, CA 91125 USA
关键词
stability; underwater vehicle; relative equilibrium; rigid body in a fluid; mechanical systems with symmetry;
D O I
10.1016/S0167-2789(97)83390-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops the stability theory of relative equilibria for mechanical systems with symmetry, It is especially concerned with systems that have a noncompact symmetry group, such as the group of Euclidean motions, and with relative equilibria for such symmetry groups. For these systems with rigid motion symmetry, one gets stability but possibly with drift in certain rotational as well as translational directions. Motivated by questions on stability of underwater vehicle dynamics, it is of particular interest that. in some cases, we can allow the relative equilibria to have nongeneric values of their momentum. The results are proved by combining theorems of Patrick with the technique of reduction by stages. This theory is then applied to underwater vehicle dynamics. The stability of specific relative equilibria for the underwater vehicle is studied. For example, we find conditions for Liapunov stability of the steadily rising and possibly spinning, bottom-heavy vehicle, which corresponds to a relative equilibrium with nongeneric momentum. The results of this paper should prove useful for the control of underwater vehicles.
引用
收藏
页码:130 / 162
页数:33
相关论文
共 38 条
[1]  
[Anonymous], 1994, INTRO MECH SYMMETRY
[2]  
[Anonymous], CONT MATH
[3]  
[Anonymous], LECT NOTES MATH
[4]   CHAOTIC MOTION OF A SOLID THROUGH IDEAL FLUID [J].
AREF, H ;
JONES, SW .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (12) :3026-3028
[5]  
ARNOLD VI, 1993, ENCY MATH, V3
[6]   The Euler-Poincare equations and double bracket dissipation [J].
Bloch, A ;
Krishnaprasad, PS ;
Marsden, JE ;
Ratiu, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :1-42
[7]   STABILIZATION OF RIGID BODY DYNAMICS BY INTERNAL AND EXTERNAL TORQUES [J].
BLOCH, AM ;
KRISHNAPRASAD, PS ;
MARSDEN, JE ;
DEALVAREZ, GS .
AUTOMATICA, 1992, 28 (04) :745-756
[8]  
Bloch AM, 1997, CURRENT AND FUTURE DIRECTIONS IN APPLIED MATHEMATICS, P43
[9]   DISSIPATION INDUCED INSTABILITIES [J].
BLOCH, AM ;
KRISHNAPRASAD, PS ;
MARSDEN, JE ;
RATIU, TS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :37-90
[10]  
BLOCH AM, 1989, THEOR COMP FLUID DYN, V1, P179