Efficient white OLEDs employing phosphorescent sensitization

被引:26
作者
Chang, Chih-Hao [1 ]
Lu, Yin-Jui
Liu, Chih-Che
Yeh, Yung-Hui [2 ]
Wu, Chung-Chih [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Electroopt Engn, Dept Elect Engn, Taipei 10617, Taiwan
[2] Ind Technol Res Inst, Display Technol Ctr, Hsinchu, Taiwan
来源
JOURNAL OF DISPLAY TECHNOLOGY | 2007年 / 3卷 / 02期
关键词
phosphorescent sensitization; solid-state lighting; white organic light-emitting devices (WOLEDs);
D O I
10.1109/JDT.2007.895354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have investigated white-emitting organic light-emitting devices (WOLEDs) making use of both blue-phosphor-sensitized orange-red fluorescence and the residual blue phosphorescence. By carefully adjusting the concentrations the phosphor and the fluorophore in the emitting layer and choosing the carrier-transport layers in the device structure, WOLEDs containing a single phosphor-sensitized emitting layer (type-I devices) can give colors close to the equal-energy white (0.33, 0.33), CRI up to 75, and efficiencies up to (10%, 23 cd/A, 13.4 lm/W). Furthermore, by doping a green phosphor into the poorly emitting electron-transport layer (type-II devices) to recycle excitons formed there, the EL efficiencies can be further enhanced up to (12.1%, 35.3 cd/A, 23.9 lm/W). In both types of devices, the phosphor sensitization reduces population of triplet excitons in the emitting region and substantially mitigates the efficiency roll-off with the driving current or brightness that is often observed in all-phosphor OLEDs. At the brightness of 1000 cd/m(2), both types of devices retain quantum and cadmium per ampere (cd/A) efficiencies similar to their peak values.
引用
收藏
页码:193 / 199
页数:7
相关论文
共 25 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
NATURE, 2000, 403 (6771) :750-753
[3]   Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts [J].
Bulovic, V ;
Shoustikov, A ;
Baldo, MA ;
Bose, E ;
Kozlov, VG ;
Thompson, ME ;
Forrest, SR .
CHEMICAL PHYSICS LETTERS, 1998, 287 (3-4) :455-460
[4]   Highly efficient UV organic light-emitting devices based on bi(9,9-diarylfluorene)s [J].
Chao, TC ;
Lin, YT ;
Yang, CY ;
Hung, TS ;
Chou, HC ;
Wu, CC ;
Wong, KT .
ADVANCED MATERIALS, 2005, 17 (08) :992-+
[5]   White organic light-emitting devices for solid-state lighting [J].
D'Andrade, BW ;
Forrest, SR .
ADVANCED MATERIALS, 2004, 16 (18) :1585-1595
[6]   Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J].
D'Andrade, BW ;
Holmes, RJ ;
Forrest, SR .
ADVANCED MATERIALS, 2004, 16 (07) :624-+
[7]  
D'Andrade BW, 2002, ADV MATER, V14, P147, DOI 10.1002/1521-4095(20020116)14:2<147::AID-ADMA147>3.0.CO
[8]  
2-3
[9]   High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence [J].
D'Andrade, BW ;
Baldo, MA ;
Adachi, C ;
Brooks, J ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (07) :1045-1047
[10]   White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer [J].
Deshpande, RS ;
Bulovic, V ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (07) :888-890