Further results for systems with repeated scalar nonlinearities

被引:21
作者
Chu, YC [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
diagonally dominant matrices; integral quadratic constraints; linear matrix inequalities; M-matrices; model reduction; recurrent neural networks; Stieltjes matrices;
D O I
10.1109/9.975515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The class of nonlinear systems described by a discrete-time state-equation containing a repeated scalar nonlinearity is considered. This note sharpens several previous results on the performance synthesis and model reduction for such systems. Extensions to the case that the nonlinearity is not an odd function are also discussed.
引用
收藏
页码:2031 / 2035
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]   Model reduction of multidimensional and uncertain systems [J].
Beck, CL ;
Doyle, J ;
Glover, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (10) :1466-1477
[3]   Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities [J].
Chu, YC ;
Glover, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :471-483
[4]   Stabilization and performance synthesis for systems with repeated scalar nonlinearities [J].
Chu, YC ;
Glover, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :484-496
[5]  
Chu YC, 2000, IEEE DECIS CONTR P, P280, DOI 10.1109/CDC.2000.912773
[6]  
CHU YC, 1996, THESIS U CAMBRIDGE C
[7]   AN IDENTITY FOR SCHUR COMPLEMENT OF A MATRIX [J].
CRABTREE, DE ;
HAYNSWORTH, EV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (02) :364-+
[8]  
D'Amato F. J., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P2375, DOI 10.1109/ACC.1999.786470
[9]  
Fiedler M, 1998, LINEAR ALGEBRA APPL, V276, P179
[10]  
KULKARNI VV, 2000, THESIS U SO CALIFORN