Vectorial analytical description of propagation of a highly nonparaxial beam

被引:78
作者
Ciattoni, A [1 ]
Crosignani, B
Di Porto, P
机构
[1] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[2] Ist Nazl Fis Mat, Unita Roma 3, Rome, Italy
[3] Univ Aquila, Dipartimento Fis, I-67010 Laquila, Italy
[4] Ist Nazl Fis Mat, Unita Roma La Sapienza, I-00185 Rome, Italy
关键词
nonparaxial propagation; Gaussian beams;
D O I
10.1016/S0030-4018(01)01722-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a formalism describing optical propagation in a homogeneous medium of a fully vectorial highly nonparaxial field, characterized by a waist smaller than the wavelength. The method allows us to derive an analytical expression for a field possessing an initial Gaussian transverse distribution of width w, in the extreme nonparaxial regime w < lambda, valid for propagation distances z greater than or similar to d, where d = w(2)/lambda is the diffraction length. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 14 条
[1]   NON-DIFFRACTIVE VECTOR BESSEL BEAMS [J].
BOUCHAL, Z ;
OLIVIK, M .
JOURNAL OF MODERN OPTICS, 1995, 42 (08) :1555-1566
[2]   Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation [J].
Ciattoni, A ;
Di Porto, P ;
Crosignani, B ;
Yariv, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (05) :809-819
[3]   COMPLEX SOURCE-POINT THEORY OF THE ELECTROMAGNETIC OPEN RESONATOR [J].
CULLEN, AL ;
YU, PK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 366 (1725) :155-171
[4]   GAUSSIAN BEAM AS A BUNDLE OF COMPLEX RAYS [J].
DESCHAMPS, GA .
ELECTRONICS LETTERS, 1971, 7 (23) :684-+
[5]  
Goodman W., 2005, INTRO FOURIER OPTICS, V3rd
[6]  
JOANNOPOULIS JD, 1995, PHOTONIC CRYSTALS
[7]   MAXWELL TO PARAXIAL WAVE OPTICS [J].
LAX, M ;
LOUISELL, WH ;
MCKNIGHT, WB .
PHYSICAL REVIEW A, 1975, 11 (04) :1365-1370
[8]  
Luneburg R., 1944, MATH THEORY OPTICS
[9]  
Ramond P., 1990, FIELD THEORY MODERN
[10]   Wave propagation in a guiding structure: Beyond the paraxial approximation one step [J].
Savchencko, AY ;
Zeldovich, BY .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (02) :273-281