Direct real-time evaluation of nitration with green fluorescent protein in solution and within human cells reveals the impact of nitrogen dioxide vs. peroxynitrite mechanisms

被引:80
作者
Espey, MG [1 ]
Xavier, S [1 ]
Thomas, DD [1 ]
Miranda, KM [1 ]
Wink, DA [1 ]
机构
[1] NCI, Radiat Biol Branch, NIH, Bethesda, MD 20892 USA
关键词
3-nitrotyrosine; myeloperoxidase; nitric oxide; xanthine oxidase; superoxide;
D O I
10.1073/pnas.062604199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3-Nitrotyrosyl adducts in proteins have been detected in a wide range of diseases. The mechanisms by which reactive nitrogen oxide species may impede protein function through nitration were examined by using a unique model system, which exploits a critical tyrosyl residue in the fluorophoric pocket of recombinant green fluorescent protein (GFP). Exposure of purified GFP suspended in phosphate buffer to synthetic peroxynitrite in either 0.5 or 5 muM steps resulted in progressively increased 3-nitrotyrosyl immunoreactivity concomitant with disappearance of intrinsic fluorescence (IC50 approximate to 20 muM). Fluorescence from an equivalent amount of GFP expressed within intact MCF-7 tumor cells was largely resistant to this bolus treatment (IC50 > 250 muM). The more physiologically relevant conditions of either peroxynitrite infusion (1 muM/min) or de novo formation by simultaneous, equimolar generation of nitric oxide (NO) and superoxide (e.g., 3-morpholinosydnonimine; NONOates plus xanthine oxidase/hypoxanthine, menadione, or mitomycin C) were examined. Despite robust oxidation of dihydrorhodamine under each of these conditions, fluorescence decrease of both purified and intracellular GFP was not evident regardless of carbon dioxide presence, suggesting that oxidation and nitration are not necessarily coupled. Alternatively, both extra- and intracellular GFP fluorescence was exquisitely sensitive to nitration produced by heme-peroxidase/hydrogen peroxide-catalyzed oxidation of nitrite. Formation of nitrogen dioxide (NO2) during the reaction between NO and the nitroxide 2-phenyl-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide indicated that NO2 can enter cells and alter peptide function through tyrosyl nitration. Taken together, these findings exemplified that heme-peroxidase-catalyzed formation of NO2 may play a pivotal role in inflammatory and chronic disease settings while calling into question the significance of nitration by peroxynitrite.
引用
收藏
页码:3481 / 3486
页数:6
相关论文
共 43 条
[1]  
[Anonymous], 2006, J PHYSIOL-LONDON, DOI DOI 10.1113/jphysiol.2006.116632
[2]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[3]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[4]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[5]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[6]   PATHOLOGICAL IMPLICATIONS OF NITRIC-OXIDE, SUPEROXIDE AND PEROXYNITRITE FORMATION [J].
BECKMAN, JS ;
CROW, JP .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (02) :330-334
[7]  
BECKMAN JS, 1995, ADV PHARMACOL, V34, P17
[8]  
Christodoulou D, 1996, METHOD ENZYMOL, V268, P69
[9]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[10]   DESFERRIOXAMINE INHIBITION OF THE HYDROXYL RADICAL-LIKE REACTIVITY OF PEROXYNITRITE - ROLE OF THE HYDROXAMIC GROUPS [J].
DENICOLA, A ;
SOUZA, JM ;
GATTI, RM ;
AUGUSTO, O ;
RADI, R .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 19 (01) :11-19