Solving the Schrodinger equation for bound states with Mathematica 3.0

被引:232
作者
Lucha, W
Schöberl, FF
机构
[1] Osterreich Akad Wissensch, Inst Hochenergiephys, A-1050 Vienna, Austria
[2] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 1999年 / 10卷 / 04期
关键词
Schroedinger equation; bound state; energy eigenvalue; wave function; numerical solution;
D O I
10.1142/S0129183199000450
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using Mathematica 3.0, the Schrodinger equation for bound states is solved. The method of solution is based on a numerical integration procedure together with convexity arguments and the nodal theorem for wave functions. The interaction potential has to be spherically symmetric. The solving procedure is simply defined as some Mathematica function. The output is the energy eigenvalue and the reduced wave function, which is provided as an interpolated function (and can thus be used for the calculation of, e.g., moments by using any Mathematica built-in function) as well as plotted automatically. The corresponding program schroedingar.nb can be obtained from franz.schoeberl@univie.ac.at.
引用
收藏
页码:607 / 619
页数:13
相关论文
共 7 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1964, QUANTUM MECH
[3]   SOLVING THE SCHRODINGER-EQUATION FOR BOUND-STATES [J].
FALKENSTEINER, P ;
GROSSE, H ;
SCHOBERL, F ;
HERTEL, P .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 34 (03) :287-293
[4]  
Grosse H., 1980, Physics Reports, V60, P341, DOI 10.1016/0370-1573(80)90031-9
[5]   BOUND-STATES OF QUARKS [J].
LUCHA, W ;
SCHOBERL, FF ;
GROMES, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 200 (04) :127-240
[6]  
REED M, 1978, METHODS MODERN MATH, V7
[7]  
WOLFRAM S, 1997, MATH BUCH MATH VERSI