Cell membrane microparticles in blood and blood products: Potentially pathogenic agents and diagnostic markers

被引:253
作者
Simak, J [1 ]
Gelderman, MP [1 ]
机构
[1] US FDA, Ctr Biol Evaluat & Res, Lab Cellular Hematol, Bethesda, MD 20014 USA
关键词
D O I
10.1016/j.tmrv.2005.08.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cell membrane microparticles (MPs) circulate in the blood of healthy donors, and their elevated counts have been documented in various pathologies. Microparticles are phospholipid microvesicles of 0.05 to 1.5 mu m in size, containing certain membrane proteins of their parental cells. Thus, different phenotypes of MPs derived from platelets, blood cells, endothelial cells, and some other cell types have been identified in plasma. Microparticles are released by various stimuli including shear stress, complement attack, or proapoptotic stimulation. Microparticle release is a highly controlled process and likely independent from metabolic energy. Elevated MPs in various diseases indicate their diagnostic importance, particularly in vascular pathologies. Moreover, MPs in blood possess a broad spectrum of biologic activities. Microparticles; may facilitate cell-to-cell interactions, induce cell signaling, or even transfer receptors between different cell types. The physiological roles of MPs in various tissue defense processes have been suggested and the pathophysiologic implications of MPs in thrombosis, inflammation, cancer metastasis, or response to pathogens have been proposed. This is important for transfusion medicine because MPs are present in both plasma and cellular blood products. Thus, the investigation of potentially pathogenic effects of MPs in blood products and of MP release associated with blood product processing and storage have yet to come. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 156 条
[1]   Budding, vesiculation and permeabilization of phospholipid membranes -: evidence for a feasible physiologic role of β2-glycoprotein I and pathogenic actions of anti-β2-glycoprotein I antibodies [J].
Ambrozic, A ;
Bozic, B ;
Kveder, T ;
Majhenc, J ;
Arrigler, V ;
Svetina, S ;
Rozman, B .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2005, 1740 (01) :38-44
[2]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[3]   Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia [J].
Aras, O ;
Shet, A ;
Bach, RR ;
Hysjulien, JL ;
Slungaard, A ;
Hebbel, RP ;
Escolar, G ;
Jilma, B ;
Key, NS .
BLOOD, 2004, 103 (12) :4545-4553
[4]   The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection [J].
Aupeix, K ;
Hugel, B ;
Martin, T ;
Bischoff, P ;
Lill, H ;
Pasquali, JL ;
Freyssinet, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (07) :1546-1554
[5]   Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles [J].
Barry, OP ;
Pratico, D ;
Lawson, JA ;
FitzGerald, GA .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (09) :2118-2127
[6]   Modulation of monocyte-endothelial cell interactions by platelet microparticles [J].
Barry, OP ;
Praticò, D ;
Savani, RC ;
FitzGerald, GA .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (01) :136-144
[7]   Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C mitogen-activated protein kinase-dependent pathway [J].
Barry, OP ;
Kazanietz, MG ;
Praticò, D ;
FitzGerald, GA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (11) :7545-7556
[8]   CORRELATION BETWEEN INHIBITION OF CYTOSKELETON PROTEOLYSIS AND ANTI-VESICULATION EFFECT OF CALPEPTIN DURING A23187-INDUCED ACTIVATION OF HUMAN PLATELETS - ARE VESICLES SHED BY FILOPOD FRAGMENTATION [J].
BASSE, F ;
GAFFET, P ;
BIENVENUE, A .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1190 (02) :217-224
[9]  
Berckmans RJ, 2001, THROMB HAEMOSTASIS, V85, P639
[10]   High levels of circulating endothelial microparticles in patients with acute coronary syndromes [J].
Bernal-Mizrachi, L ;
Jy, W ;
Jimenez, JJ ;
Pastor, J ;
Mauro, LM ;
Horstman, LL ;
de Marchena, E ;
Ahn, YS .
AMERICAN HEART JOURNAL, 2003, 145 (06) :962-970