Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei

被引:73
作者
Karlsson, J
Momcilovic, D
Wittgren, B
Schülein, M
Tjerneld, F
Brinkmalm, G [1 ]
机构
[1] AstraZeneca R&D Molndal, S-43183 Molndal, Sweden
[2] Lund Univ, Dept Biochem, S-22100 Lund, Sweden
[3] Novozymes, DK-2880 Bagsvaerd, Denmark
关键词
size exclusion chromatography; matrix-assisted laser desorption/ionization mass spectrometry; carboxymethyl cellulose; substituent distribution; endoglucanases; enzymatic hydrolysis; Humicola insolens; Trichoderma reesei;
D O I
10.1002/bip.1060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V)from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V)from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non substituted oligosaccharides with size exclusion chromatographly (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5.A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharide with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC. (C) 2002 John Wiley & Sons, Inc. Biopolymers 63: 32-40, 2002.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 39 条
[1]   SUBSTITUENT DISTRIBUTION ALONG THE CELLULOSE BACKBONE IN O-METHYLCELLULOSES USING GC AND FAB-MS FOR MONOMER AND OLIGOMER ANALYSIS [J].
ARISZ, PW ;
KAUW, HJJ ;
BOON, JJ .
CARBOHYDRATE RESEARCH, 1995, 271 (01) :1-14
[2]   INDUCTION, ISOLATION AND TESTING OF STABLE TRICHODERMA-REESEI MUTANTS WITH IMPROVED PRODUCTION OF SOLUBILIZING CELLULASE [J].
BAILEY, MJ ;
NEVALAINEN, KMH .
ENZYME AND MICROBIAL TECHNOLOGY, 1981, 3 (02) :153-157
[3]  
BATDORF JB, 1973, IND GUMS, P695
[4]   Analysis of partially methyl-esterified galacturonic acid oligomers by high-performance anion-exchange chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J].
Daas, PJH ;
Arisz, PW ;
Schols, HA ;
De Ruiter, GA ;
Voragen, AGJ .
ANALYTICAL BIOCHEMISTRY, 1998, 257 (02) :195-202
[5]   Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 angstrom resolution [J].
Davies, GJ ;
Tolley, SP ;
Henrissat, B ;
Hjort, C ;
Schulein, M .
BIOCHEMISTRY, 1995, 34 (49) :16210-16220
[6]   STRUCTURE AND FUNCTION OF ENDOGLUCANASE-V [J].
DAVIES, GJ ;
DODSON, GG ;
HUBBARD, RE ;
TOLLEY, SP ;
DAUTER, Z ;
WILSON, KS ;
HJORT, C ;
MIKKELSEN, JM ;
RASMUSSEN, G ;
SCHULEIN, M .
NATURE, 1993, 365 (6444) :362-364
[7]   Highly efficient synthesis of β(1→4)-oligo- and -polysaccharides using a mutant cellulase [J].
Fort, S ;
Boyer, V ;
Greffe, L ;
Davies, G ;
Moroz, O ;
Christiansen, L ;
Schülein, M ;
Cottaz, S ;
Driguez, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (23) :5429-5437
[8]   MEASUREMENT OF CELLULASE ACTIVITIES [J].
GHOSE, TK .
PURE AND APPLIED CHEMISTRY, 1987, 59 (02) :257-268
[9]  
Harvey DJ, 1999, MASS SPECTROM REV, V18, P349, DOI 10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.3.CO
[10]  
2-8