Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription

被引:71
作者
Spengler, ML [1 ]
Brattain, MG [1 ]
机构
[1] Roswell Pk Canc Inst, Dept Pharmacol & Therapeut, Buffalo, NY 14263 USA
关键词
D O I
10.1074/jbc.M600035200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sp1 is a ubiquitously expressed transcription factor that binds GC-rich cis elements. Many posttranslational modifications have been implicated in the regulation of Sp1 activity. We now provide evidence for a novel mechanism of Sp1 regulation involving the small ubiquitin-like modifier (SUMO-1). Western blot analysis revealed a high molecular mass Sp1 of 125 kDa that is stabilized by a selective SUMO hydrolase inhibitor and destabilized by a specific SUMO-1 hydrolase. The covalent modification of Sp1 by endogenous SUMO-1 and SUMO-1 that has been fused to green fluorescent protein was demonstrated using transient transfection assays. A high probability sumoylation consensus motif, (VKIE18)-I-16, is located within the N-terminal negative regulatory domain of Sp1. Either arginine substitution for lysine 16 ( Sp1(K16R)) or alanine substitution for glutamic acid 18 ( Sp1(E18A)), abrogated Sp1 sumoylation. In vitro SUMO-1 covalently bound affinity-purified GST-Sp1, but not GST-Sp1(K16R). In vivo Sp1 was determined to be N- terminally cleaved, while Sp1( K16R) could not be cleaved indicating that sumoylation and cleavage are coupled through the key regulatory lysine 16. This coupling was evident by the demonstration of an inverse relationship between cellular SUMO-modified Sp1 and N- terminally cleaved Sp1. Compared with Sp1, sumoylation-deficient Sp1( E18A) exhibited enhanced cleavage and was a better transcriptional activator, while constitutively SUMO-1-modified Sp1 was deficient in proteolytic processing and repressed Sp1 transcriptional activity. The repressive effect of sumoylation on Sp1 activity is emphasized through the use of a GAL4 based transactivation assay. A model is proposed defining a mechanism by which sumoylation preserves the integrity of a negative regulatory domain thereby allowing for the inhibition of Sp-dependent transcription.
引用
收藏
页码:5567 / 5574
页数:8
相关论文
共 37 条
[1]   Growth/cell cycle regulation of Sp1 phosphorylation [J].
Black, AR ;
Jensen, D ;
Lin, SY ;
Azizkhan, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (03) :1207-1215
[2]   Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer [J].
Black, AR ;
Black, JD ;
Azizkhan-Clifford, J .
JOURNAL OF CELLULAR PHYSIOLOGY, 2001, 188 (02) :143-160
[3]   Regulation of the activity of Sp1-related transcription factors [J].
Bouwman, P ;
Philipsen, S .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2002, 195 (1-2) :27-38
[4]   PURIFICATION AND BIOCHEMICAL-CHARACTERIZATION OF THE PROMOTER-SPECIFIC TRANSCRIPTION FACTOR, SPL [J].
BRIGGS, MR ;
KADONAGA, JT ;
BELL, SP ;
TJIAN, R .
SCIENCE, 1986, 234 (4772) :47-52
[5]   ANALYSIS OF SP1 INVIVO REVEALS MULTIPLE TRANSCRIPTIONAL DOMAINS, INCLUDING A NOVEL GLUTAMINE-RICH ACTIVATION MOTIF [J].
COUREY, AJ ;
TJIAN, R .
CELL, 1988, 55 (05) :887-898
[6]   Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation [J].
Du, XL ;
Edelstein, D ;
Rossetti, L ;
Fantus, IG ;
Goldberg, H ;
Ziyadeh, F ;
Wu, J ;
Brownlee, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12222-12226
[7]   Regulating the regulators: Lysine modifications make their mark [J].
Freiman, RN ;
Tjian, R .
CELL, 2003, 112 (01) :11-17
[8]   Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity [J].
Gill, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (02) :108-113
[9]   p300 transcriptional repression is mediated by SUMO modification [J].
Girdwood, D ;
Bumpass, D ;
Vaughan, OA ;
Thain, A ;
Anderson, LA ;
Snowden, AW ;
Garcia-Wilson, E ;
Perkins, ND ;
Hay, RT .
MOLECULAR CELL, 2003, 11 (04) :1043-1054
[10]   Differential regulation of sentrinized proteins by a novel sentrin-specific protease [J].
Gong, LM ;
Millas, S ;
Maul, GG ;
Yeh, ETH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (05) :3355-3359