Computing the numerical radius

被引:20
作者
Watson, GA
机构
[1] Dept. of Math. and Computer Science, University of Dundee
关键词
D O I
10.1016/0024-3795(94)00097-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple algorithm is presented for computing the numerical radius of a complex matrix. It is based on the power method for finding the maximum modulus eigenvalue of a Hermitian matrix.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 9 条
[1]  
AXELSSON O, 1993, 9308 CATH U NIJM DEP
[2]  
Fletcher R., 1981, PRACTICAL METHODS OP
[3]   ON THE NUMERICAL RADIUS AND ITS APPLICATIONS [J].
GOLDBERG, M ;
TADMOR, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 42 (FEB) :263-284
[4]  
Goldberg M, 1979, Linear and Multilinear Algebra, V7, P329
[5]  
Horn R.A., 1991, TOPICS MATRIX ANAL
[6]  
Horn R. A., 1986, Matrix analysis
[7]   MATRIX COMPLETIONS, NORMS, AND HADAMARD-PRODUCTS [J].
MATHIAS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) :905-918
[8]   LARGE-SCALE OPTIMIZATION OF EIGENVALUES [J].
Overton, Michael L. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :88-120
[9]   ON MINIMIZING THE MAXIMUM EIGENVALUE OF A SYMMETRIC MATRIX [J].
OVERTON, ML .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (02) :256-268