What Makes a Protein Fold Amenable to Functional Innovation? Fold Polarity and Stability Trade-offs

被引:124
作者
Dellus-Gur, Eynat [1 ]
Toth-Petroczy, Agnes [1 ]
Elias, Mikael [1 ]
Tawfik, Dan S. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
protein evolution; enzyme evolution; protein disorder; protein folds; TEM-1; BETA-LACTAMASE; ITERATIVE SATURATION MUTAGENESIS; LATENT EVOLUTIONARY POTENTIALS; DIRECTED EVOLUTION; SEQUENCE SPACE; ANTIBIOTIC-RESISTANCE; EVOLVABILITY; ENZYME; ROBUSTNESS; THERMOSTABILITY;
D O I
10.1016/j.jmb.2013.03.033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein evolvability includes two elements-robustness (or neutrality, mutations having no effect) and innovability (mutations readily inducing new functions). How are these two conflicting demands bridged? Does the ability to bridge them relate to the observation that certain folds, such as TIM barrels, accommodate numerous functions, whereas other folds support only one? Here, we hypothesize that the key to innovability is polarity-an active site composed of flexible, loosely packed loops alongside a well-separated, highly ordered scaffold. We show that highly stabilized variants of TEM-1 beta-lactamase exhibit selective rigidification of the enzyme's scaffold while the active-site loops maintained their conformational plasticity. Polarity therefore results in stabilizing, compensatory mutations not trading off, but instead promoting the acquisition of new activities. Indeed, computational analysis indicates that in folds that accommodate only one function throughout evolution, for example, dihydrofolate reductase, >= 60% of the active-site residues belong to the scaffold. In contrast, folds associated with multiple functions such as the TIM barrel show high scaffold-active-site polarity (similar to 20% of the active site comprises scaffold residues) and >2-fold higher rates of sequence divergence at active-site positions. Our work suggests structural measures of fold polarity that appear to be correlated with innovability, thereby providing new insights regarding protein evolution, design, and engineering. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2609 / 2621
页数:13
相关论文
共 56 条
[1]  
Amitai G, 2007, HFSP J, V1, P67, DOI [10.2976/1.2739115, 10.2976/1.2739115/10.2976/1]
[2]   How enzymes adapt: lessons from directed evolution [J].
Arnold, FH ;
Wintrode, PL ;
Miyazaki, K ;
Gershenson, A .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (02) :100-106
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]  
Bershtein S., 2007, J MOL BIOL
[5]   Intense neutral drifts yield robust and evolvable consensus proteins [J].
Bershtein, Shimon ;
Goldin, Korina ;
Tawfik, Dan S. .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 379 (05) :1029-1044
[6]   Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein [J].
Bershtein, Shimon ;
Segal, Michal ;
Bekerman, Roy ;
Tokuriki, Nobuhiko ;
Tawfik, Dan S. .
NATURE, 2006, 444 (7121) :929-932
[7]   Protein stability promotes evolvability [J].
Bloom, JD ;
Labthavikul, ST ;
Otey, CR ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5869-5874
[8]   Thermodynamic prediction of protein neutrality [J].
Bloom, JD ;
Silberg, JJ ;
Wilke, CO ;
Drummond, DA ;
Adami, C ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :606-611
[9]   Structural determinants of the rate of protein evolution in yeast [J].
Bloom, Jesse D. ;
Drummond, D. Allan ;
Arnold, Frances H. ;
Wilke, Claus O. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (09) :1751-1761
[10]   Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space [J].
Bornberg-Bauer, E ;
Chan, HS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (19) :10689-10694